Pf of OMT:
Suppose $T \in B(X, Y)$ is sorjective ad X al Y are Beach spruces. Then T is open.

Pf: Let $B_{x}=B_{1}(0, x)$.
Let $\mathscr{E}_{y}=\overline{T\left(B_{x}\right)}$.
By linearity $r \not \mathscr{B}_{y}=r \overline{T\left(B_{x}\right)}$

$$
\begin{aligned}
& =\overline{r T\left(B_{x}\right)} \\
& =\frac{T\left(r B_{x}\right)}{}
\end{aligned}
$$

Hence $\bigcup_{n \in \mathbb{N}} n \mathscr{H}_{Y}=\bigcup_{n \in N} T\left(\wedge B_{x}\right)=T\left(\bigcup \cup B_{x}\right)=T(x)=Y$.
Since 4 is complete, the Baine Categay Thearen implies
Sone $\uparrow{ }^{n} H_{y}$ contains an aspen ball and lance also chased set

$$
y_{T}=\overline{T\left(B_{x}\right)} .
$$

Now $T\left(B_{x}\right)$ is symuthic about 0 and cower, and have so is $A_{4}=\overline{T\left(B_{x}\right)}$.

Observe $H_{y} \geq B_{r}(y, y)$ ad

$$
\mathcal{H}_{y} \geq B_{r}\left(-y_{0}, T\right) \text { by symmetry about } 0 \text {. }
$$

But then if $\|w\|<v,-y_{0}+w$ ad $y_{0}+w \in \mathcal{H}_{\tau}$.
By converidy $\omega=\frac{1}{2}\left(y_{0}+\omega\right)+\frac{1}{2}\left(-y_{0}+\omega\right) \subset H_{y}$ as nod
So $B_{r}(0, y) \subseteq \mathscr{H}_{y}=\overline{T\left(B_{1}(0, x)\right.}$.
By the techacial lemma, $B_{\frac{r}{2}}(0, y) \subseteq T\left(B_{1}(0, x)\right)$.
Bat then for any $\varepsilon>0, T\left(B_{\varepsilon}(0, x)\right) \geq B_{\frac{r \varepsilon}{2}}(0, y)$.
Now let $U \in X$ be open and let $\psi \in T(U)$
Pick $x \in l_{w}$ th $T_{x}=y$. There exits $\varepsilon \leq 0$ with $B_{\varepsilon}(x, x) \leq 0$.
But Than $T\left(B_{\varepsilon}(x, x)\right)=T(x)+T\left(B_{\varepsilon}(0, x)\right)$

$$
\begin{aligned}
& \geq T(x)+B_{\frac{r \xi}{2}}(0, Y) \\
& =B_{\frac{r \xi}{2}}(y, y) \text {. So } T U \text { is open, }
\end{aligned}
$$

of BIT
Cor: Sappose $T \in B(X, Y)$ an X, Y me Buach spaces. The TFAE

1) T is inveatitp
2) $T(X)$ is dase $4 Y$ ad $\exists c,\|T(x)\| \geqslant c\|x\|$ f all $x \in X$.

Pf: If T is moatible $T(X)=Y$ ad given ay

$$
\begin{aligned}
x \in x, \quad x & =T^{-1}(y) d \\
\|x\| & =\left\|T^{-1}(y)\right\| \leqslant\left\|T^{-1}\right\|\left\|_{y}\right\|=\left\|T^{-1}\right\| \|\left(T_{x} \|\right.
\end{aligned}
$$

So $c=\left\|\tau^{-1}\right\|^{-1}$ warks.
Cowerely suppose $T(x)_{\text {is }}$ dase ad $\exists c,\|T(x)\| \geqslant c\|x\| \forall x$. We need inh shew T is bijectre. $\leftarrow B L T$!
Tis injective, for if $T(x)=0, \quad c\|x\|=0 \Rightarrow x=0$.
As for surjectiouts, swen $y \in \zeta$ find $x_{1} \xi, T_{x_{1}} \rightarrow y$.
Then $\left\{T_{x 1}\right\}$ is Caudry, as is $\left\{\begin{array}{l}\text { as }\end{array}\right.$

$$
\left\|x_{1}-x_{m}\right\| \leqslant c\left\|T\left(x_{1}-x_{n}\right)\right\|-c\left\|T_{m_{1}}-T_{x_{m}}\right\| .
$$

So $x_{1} \rightarrow x$ for sene x ad $T_{x_{1}} \rightarrow T_{x}$.

Cor: If $T \in B(x, Y)$ between Bunads spros then exactly one of the followny is thae
a) T is invartible
b) $T(X)$ is not densc on the is a seqvence $\left\{x_{1}\right\}$ in $X,\left\|x_{1}\right\|=1,\left\|T_{x_{n}}\right\| \rightarrow 0$
(eitler ofb \Rightarrow not mestible)
($\left\|T_{x}\right\| \geqslant \frac{1}{n}\|x\|$ fails for eadh n for sore $x \neq 0$
So $13 \quad v_{1} \neq 0 \quad\left\|T_{x_{n}}\right\| \leq \frac{1}{n}\left\|x_{1}\right\|$ and
cm assum WLOG $H_{a l l}=1$.

Recall $I\left(f_{n}\right) \quad f_{n}-x^{n}=\frac{1}{n+1} x^{n+1}$

$$
\left\|f_{1}\right\|=1 \quad\left\|I f_{1}\right\|_{\infty}=\frac{1}{n+1}
$$

So $I: C[0,1] \rightarrow C[0,1]$ con't be invertible.
Ad since I is injectiveg the incse of I con't be closed: it wauld be a Buach spuce arl I wadl be muertdol.

Related result:
Closed Graph Theorem

Suppose $T: X \rightarrow Y$ is linen al X, Y are Banach spaces. Then T is continue of

$$
\operatorname{Grph}(\tau)=\left\{\left(x, T_{x}\right): x \in X\right\} \text { is closed in } X, Y \text {. }
$$

Note G morph (τ) is a subspace $\left(x, \bar{T}_{x}\right)+\left(\hat{v}, T_{\hat{x}}\right)$

$$
\begin{aligned}
& =\left(x+\hat{x}, \tau_{x}+\overline{-} \hat{x}\right) \\
& \quad=(x+\hat{x}, \tau(x+\hat{\nu})) .
\end{aligned}
$$

What's the big deal?
From the deft, to show that T is cts, need to show if $x_{1} \rightarrow x$ then $T_{x_{1}} \rightarrow T_{x}$
\uparrow
need to shew $T_{x_{1}}$ converses al its limit is Tx

But to apply $C G T$, veed to show that the smph is cloned.

$$
\begin{aligned}
& \text { i.e. ff }\left(x_{1}, y_{1}\right) \in G \operatorname{Grph} T \\
&\left(x_{1}, y_{1}\right) \rightarrow(x, y) \text { then }(x, y) \in \text { Guph } T . \\
& \frac{\nu}{T_{x_{1}}}
\end{aligned}
$$

That is if $\begin{aligned} x_{1} & \rightarrow x \\ T_{x_{n}} & \rightarrow y\end{aligned}$
then $y=T_{x}$.
You get to assine $T_{\text {an }}$ conveses to sonething.
e.g. If $p \leqslant q \quad l^{p} \leq l^{q}$:

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|x_{k}\right|^{q} & =\sum_{k=1}^{N}\left|x_{k}\right|^{q}+\sum_{k=N+1}^{\infty}\left|x_{k}\right|^{q} \\
& \leqslant \sum_{k=1}^{N}\left|x_{k}\right|^{q}+\sum_{k=w_{1}}^{\infty}\left|x_{k}\right|^{p} \quad\left(\left|x_{k}\right| \leqslant 1\right. \\
& \Rightarrow\left|x_{k}\right|^{p} \geqslant\left|\alpha_{k}\right|^{q} .
\end{aligned}
$$

I clame $\left(l^{p}, l^{p}\right) \rightarrow\left(l^{p}, l^{q}\right)$ is ots.

Suppens $\left(x_{n}\right) \in l^{\rho} \quad x_{1} \xrightarrow{l^{\rho}} x$
and $x_{n} \xrightarrow{l q} y$.
For each $k \quad x_{1}(k) \rightarrow x(k)$

$$
x_{1}(k) \rightarrow y(k) \quad \text { so } \quad x(k)=y(k) \text {. }
$$

Pf: Sapnese T is des and

$$
\left(x_{1}, T_{x}\right) \rightarrow(x, y) .
$$

Then $x_{n} \rightarrow x$ sc $T_{x_{n} \rightarrow T_{x}}$. Since $T_{x_{1} \rightarrow 4,} y=T_{x}$ ad $(x, y) \in$ Guph T.

Suppese Greph T is closed. Then Gapih T is a closel subset of a Bmach spuce all is a Banch space.

$$
\text { Dofine } \begin{aligned}
\pi_{x}: G_{\text {mik }}(\tau) & \rightarrow x \\
\left(y, T_{x}\right) & \rightarrow x \\
\pi_{y}: x_{x}, y & \rightarrow 4 \\
(x, y) & \rightarrow 4 .
\end{aligned}
$$

Obsene π_{x}, π_{y} are cts, lamen Sure π_{x} is bijective, π_{x} has a cartannes muese. Nas obscree $\left.\pi_{2} \circ \pi_{1}^{-1}(x)=\Gamma_{2}\left(y_{k}\right)=T_{b}\right)$.

Most myoterius: Buach Stew huws (pounturse boulded \Rightarrow unformly bounded)

If $\left\{T_{a}\right\}_{\alpha \in I}$ is a furk in $B(y, \psi) \quad\left(B_{\text {madh }}\right)$ and for ench $x,\left\{T_{\alpha}(x)\right\}$ is bouled, then $\exists \mu, \quad\left\|T_{\alpha}\right\| \leq \mu$ for all α.

Application: If $T_{1} \in B(x, y)$ ad for acde $x, T_{1}(x) \rightarrow T(x)$, then $T \in B(x, y)$.
Af

$$
\begin{aligned}
& T_{n}(x+y) \rightarrow T(x+y) \\
& T_{n}(x+y)=T_{k} T_{n y} \rightarrow T_{x+}+T_{y} \text { etc. Tis lineen. }
\end{aligned}
$$

Now since $T_{n} x \rightarrow T_{x}$ the opentos $\left\{t_{1}\right\}$ me pointuse bounded. So is $\mu,\left\|T_{1}\right\| \leq M$.
But $\left\|T_{x}\right\|=\operatorname{lan}\left\|\tau_{n} x\right\| \leq M\|x\|$. So $\|T\| \leq M$.
poutuse tosvesuce mphes lant is cts.

$$
(O D D!)
$$

Application:

$$
f \in C[-\pi, \pi] \quad f(-\pi)=f(\pi)
$$

Frore coeffs $c_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f$

$$
\begin{aligned}
c_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \cos (k x) f(x) d x \\
d_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \sin (k x) f(x) d x \\
f_{N}=c_{0} & +\sum_{k=1}^{N}\left[c_{k} \cos (k x)+d_{k} \sin (k x)\right]\left[\begin{array}{c}
\int \rightarrow f_{N} \\
([0, \pi \rightarrow c[0,] \\
13
\end{array}\right.
\end{aligned}
$$

We will show later

1) $f_{n} \rightarrow f$ in L^{2}

But L^{2} cowesence is protyweak. Mare $f, \rightarrow f$ in $C[0,1]$?
Weill also shan $\quad f \longrightarrow f_{N} \longrightarrow f_{N}(0)$ is $O(\log A)$
$\left\|T_{N}\right\| \rightarrow 00 . \quad S_{0}$ mast be m $f \quad\left\|T_{N} f\right\| \rightarrow \infty$
(not unit bound d \Rightarrow nat pocitwise bonded)

Proof of Bandu-Stein hues:

$$
\left\{T_{\alpha}\right\}_{\alpha \in I}
$$

Recall the space $F_{b}(I, Y)$, bounded mos fan I to Y.

$$
\|f\|=\operatorname{su\rho }_{a \in I}\|f(a)\| y . \quad \text { Is Baruch since } Y \text { is. }
$$

Given $x \in X$ define $f_{x} \in F_{b}(I, Y) \quad f_{x}(\alpha)=T_{\alpha}(x)$.
The map $x \stackrel{\phi}{\longmapsto} f_{x}$ is eviduty linear.
Well shaw it is contimaos, via CGT.
Suppose $x_{1} \rightarrow x, f_{x_{1}} \rightarrow f$ for some $f \in F_{b}(I, \zeta)$.
We need to show $f=f_{x}$. But

$$
f_{x_{n}}(\alpha) \rightarrow f(\alpha) \text { sine }\left\|f_{x_{1}}(\alpha)-f(\alpha)\right\|_{Y} \leq\left\|f_{x_{1}}-f\right\|_{b} \text {. }
$$

So $\quad T_{\alpha}\left(x_{n}\right) \longrightarrow f(\alpha)$.
But $\quad T_{\alpha}\left(x_{1}\right) \rightarrow T_{\alpha}(x)$ by continuity.
So $f(\alpha)=f_{x}(\alpha) \quad \forall \alpha$.

