Baire Categay Theorem

A complete metric spuce is not a coontuble onien of nouhne donse sets.

Noiluere dase: \bar{A} doos not centan an open ball.
E.g. \mathbb{Q} with uscoul metric.

Sivgletas are valce larse. $(a-\varepsilon, a+\varepsilon) \cap Q$ is a ball.
Q is a cantuble unin of its sivoletens, so it con't be

Let's apply, than retwen to it

The inverse of a continuous linew pup need not be continuous.

$$
\begin{aligned}
&\left(Z, l^{\prime}\right) \xrightarrow{\text { id }}\left(Z, l^{\infty}\right) \\
&\|x\|_{\infty} \leqslant\|x\|_{1} \text { so is } \text { ol}^{\frac{1}{3} .}
\end{aligned}
$$

But $x_{1}=(\underbrace{(1, \ldots, 1}_{n}, 0_{n})$
satisfies $\left\|x_{n}\right\|_{0}=1, \quad\left\|x_{n}\right\|_{1}=n$ so id ${ }^{-1}$ is not cts.
Banach Isomorphism Theatre
Major result: If $T: X \rightarrow Y$ is continuous, liner, ad bijective and if X, Y are Banach spaces, then T^{-1} is continuous.

HW: If X on T is Barack ad T, T^{-1} are cts, so is other.

The BIT follows forum a more gerent but more technical and less well motivated result:

Then (Open Mappers Theorem)
Suppose $T \in B(y, y), y$ is a Beach space, ad
T is surjective. Then T is an open rap.
(1.e. wherever $U \in X$ sopen in X

$$
T(U)=\{T(x): x \in U\} \text { is gan in } Y \text {. }
$$

Pf of BIT fam OMT
The bull $B_{1}(0, x)$ is open so $T\left(B_{1}(0, x)\right)$ is open and centaurs 0 . So there is $s>0$

$$
\overline{B_{r}}(0, y) \subseteq B_{2 r}(0, v) \subseteq T\left(B_{1}(0, x)\right)
$$

Suppose $y \in Y, y \neq 0$.
Then ${ }_{\| y}^{\| y} \| \in \overline{B_{r}}(0) \subseteq T\left(B_{1}(0, x)\right)$
ad $T^{-1}\left(\frac{r y}{\|y\|}\right) \in B_{1}(0, x)$.
I.e. $\quad\left\|T^{-1}\left(\frac{r y}{\|-1\|}\right)\right\|_{X} \leq 1$ ad

$$
\left\|T^{-1}\right\|_{x} \leqslant \frac{1}{r}\|y\|_{y}
$$

Thus $\left\|T^{-1}\right\| \leq \frac{1}{r}$ and T^{-1} is continuous.

Main Techaical Lenma Had work.
Prap: Suppuse $T: X \rightarrow Y, X$ is a Dacuh spme ad

$$
\overline{T\left(B_{1}(0, x)\right)} \geqslant B_{r}(0, y)
$$

then $T(B,(0, x)) \geq B_{\frac{r}{2}}(0, y)$.
Pf: Suppose $w \in B_{r / 2}(0, y)$, so $Z w t B_{r}(0, y)$
Find $x_{1} \in B_{1}(0, x),\left\|2_{w}-x_{1}\right\|<\frac{r}{2}$.
Sance $2^{2} w-2 x_{1} \in B_{r}(0, r)$, we can fand $x_{2} \in B_{1}(0,4)$

$$
\left\|2^{2} w-\nabla_{y}-T_{y_{2}}\right\|<\frac{r}{2} .
$$

Continums inductively, we in fand $\left\{x_{n}\right\} \quad x_{n} \in B,(0, x)$,

$$
\left\|2^{n}-2^{n} \pi_{x_{1}}-\cdots-2^{0} \sigma_{x_{n}}\right\|<\frac{n}{2} .
$$

Settug $z_{1}=\sum_{k=1}^{n} 2^{-k} x_{k}$ we fand $\left\|w-T_{2}\right\|<\frac{r}{2^{n+1}}$.
Marcues the series $\sum_{k=1}^{\infty} \tan ^{-k} x_{k}$ is abs canu, so caneres to a limit z and $\|z\| \leq \sum 2^{-k}\left\|x_{k}\right\|<1$.

Thus $z_{1} \rightarrow z \in B_{1}(0, x)$ ad

$$
T_{z}=\lim T_{z_{1}}=w .
$$

Wormup exercises:
$A \subset X$ is symmehe ubcent O if whevever $a \in A$, ac A.
Execise: If A is symmetric about 0 so is \bar{A}.

Execise: If $A \subseteq X$ is convex, so is \bar{A}.

Pf of OMT:
Suppose $T \in B(X, Y)$ is sorjective ad X al Y are Beach spruces. Then T is open.

Pf: Let $B_{x}=B_{1}(0, x)$.
Let $\mathscr{E}_{y}=\overline{T\left(B_{x}\right)}$.
By linearity $r \not \mathscr{B}_{y}=r \overline{T\left(B_{x}\right)}$

$$
\begin{aligned}
& =\overline{r T\left(B_{x}\right)} \\
& =\frac{T\left(r B_{x}\right)}{}
\end{aligned}
$$

Hence $\bigcup_{n \in \mathbb{N}} n \mathscr{H}_{Y}=\bigcup_{n \in N} T\left(\wedge B_{x}\right)=T\left(\bigcup \cup B_{x}\right)=T(x)=Y$.
Since 4 is complete, the Baine Categay Thearen implies
Sone $\uparrow{ }^{n} H_{y}$ contains an aspen ball and lance also chased set

$$
y_{T}=\overline{T\left(B_{x}\right)} .
$$

Now $T\left(B_{x}\right)$ is symuthic about 0 and cower, and have so is $A_{4}=\overline{T\left(B_{x}\right)}$.

Observe \#y $\not H_{y} \geq B_{r}(y, y)$ ad

$$
\mathcal{H}_{y} \geq B_{r}\left(-y_{0}, T\right) \text { by symmetry about } 0 \text {. }
$$

But then if $\|w\|<v,-y_{0}+w$ ad $y_{0}+w \in \mathcal{H}_{\tau}$.
By converidy $\omega=\frac{1}{2}\left(y_{0}+\omega\right)+\frac{1}{2}\left(-y_{0}+\omega\right) \subset H_{y}$ as nod
So $B_{r}(0, y) \subseteq \mathscr{H}_{y}=\overline{T\left(B_{1}(0, x)\right.}$.
By the techacial lemma, $B_{\frac{r}{2}}(0, y) \subseteq T\left(B_{1}(0, x)\right)$.
Bat then for any $\varepsilon>0, T\left(B_{\varepsilon}(0, x)\right) \geq B_{\frac{r \varepsilon}{2}}(0, y)$.
Now let $U \in X$ be open and let $\psi \in T(U)$
Pick $x \in l_{w}$ th $T_{x}=y$. There exits $\varepsilon \leq 0$ with $B_{\varepsilon}(x, x) \leq 0$.
But Than $T\left(B_{\varepsilon}(x, x)\right)=T(x)+T\left(B_{\varepsilon}(0, x)\right)$

$$
\begin{aligned}
& \geq T(x)+B_{\frac{r \xi}{2}}(0, Y) \\
& =B_{\frac{r \xi}{2}}(y, y) \text {. So } T U \text { is open, }
\end{aligned}
$$

