$L^{\prime}[0,1]:$

Stant with $\mathbb{R}[a, b]$. Ricram intesoble fuctions.
Include cortivens and pieceuse cortiveras.
Fact: If $f \in \mathbb{R}[0,1]$ ad $\varepsilon>0$ thac sa catumues g, $\int_{0}^{b}|f-g|<\varepsilon$.
$\left(C[0, b], L^{\prime}\right)$ is fine bat not complote.
are Curly seq's that ousht to convere to sorethay discort.
$\left(Q[\sigma, b], L^{\prime}\right)$ is no good: not a norm!

$$
\begin{aligned}
& f=0 \quad g=\left\{\begin{array}{ll}
1 & x=0 \\
0 & x \neq 0
\end{array} \quad \text { an }[0,1]\right. \\
& S|f|=0, \quad \int|g|=0 . \quad \text { oops. }
\end{aligned}
$$

\hat{L}^{\prime} is equidure classes of $\mathbb{R}[0, b]$
$f \sim g$ if $\int|f \cdot g|=0$.

Integration is well defined on \hat{L}^{\prime}.

$$
\begin{gathered}
\int g=\int f+\int g-f \\
\left|\int g-f\right| \leqslant \int|g-f|=0
\end{gathered}
$$

Exercise: \hat{L}^{\prime} is a vectorspuce ad
$\|[f]\| \equiv \int|f|$ for an rep is well defined ad a 101 m .

Excuse $\hat{L}^{[0,1]}$ is not complete.

$$
\frac{1}{\sqrt{x}} \geqslant M
$$

$$
f_{n}(x)=\left\{\begin{array}{cc}
\frac{1}{\sqrt{x}} & x \geq \frac{1}{n} \\
0 & 0 \leq x<\frac{1}{n}
\end{array}\right.
$$

- [f_{n}] is Candy in \hat{L}^{\prime} but does at caverge $\left[\right.$ if $|f| \leqslant M$. shaw $\mid\left[f_{n}\right]-[f] \| \geqslant \int_{0}^{\frac{1}{M^{2}}} x^{-1 / 2}-\frac{1}{M}$ $=\left.2 x^{1 / 2}\right|_{0} ^{1 / n^{2}}=\frac{1^{1 / 1}}{\mu}$
$L^{\prime}[0, b]$ is the completion of $\hat{L}^{\prime}[c, b]$
For each $F \in L^{\prime}[0,1]$ is $\{t$,$\} of Rismonn intarble.$
Cauchy in L' rom.

$$
\left[f_{1}\right] \underset{L^{\prime}}{\longrightarrow} F
$$

But F is just an abstract thing.
still $\int_{0}^{b} F$ is well defined byextersion

I will say $f:[a, b] \rightarrow \mathbb{R}$ is a representative of F
if there is a soquere in $\mathbb{R}[a, b],\left\{f_{1}\right\}$,
and $\quad\left[f_{n}\right] \rightarrow F$
$f_{n} \rightarrow f$ porturse.

Mane comment, $\left\{f_{n}\right\}$ is Caccly in L^{\prime}, so if comeses to sone F, and $f_{1} \rightarrow f$ pointivise.

- If f is a rep of F we delve

$$
\int_{a}^{b} f=\int_{a}^{\delta} F=\lim \int_{a}^{b} f_{n} \text { for my } f_{1} \rightarrow F
$$

Fads

$$
f_{1} \rightarrow 0 \text { pw, } f_{n} \text { cont }
$$

* 1) Every $F \in L^{\prime}$ adu.ts a representative f (If $F=[f] f \in \mathbb{R}[0, b]$ then f is a rep!)
* 2) There are (bonded!) fustian $f:[a, b] \rightarrow \mathbb{R}$ that are not reps.
* 3) If $f \in Q[a, b]$ is a rep of F than $\int_{a}^{b} F=\int_{a}^{b} f$ [if $f_{1} \rightarrow f$ pointuise and $\left\{f_{n}\right\}$ is Caches in L],

$$
\left.\int_{a}^{b} f_{n} \rightarrow \int_{a}^{b} f\right]
$$

4) If f, s ane reps of $F, G \quad f+g$ is a rep of $F+G$, af is a rap of aF
$f_{1}, s_{n} \operatorname{cov} E, G \quad f_{n} \rightarrow f$ pw $g_{n} \rightarrow s$ pul $f_{n}+g_{n} \rightarrow F+G$ $e^{t e}$

* 5) If f is a rap of $F \in L$ 'then
$|f|$ is a rep of an $H E L$ 'ard
$\int|f|=\|F\|_{1} \quad W_{e}\left\|c_{1}\right\| t|=|F|$.

6) If f is a rep of F ad f is a rep of G then $G=F($ If O is arcep of $F, F=0)$
$7 \quad[C[0, b]]$ is dense in $L^{\prime}[a, h]$
$\left[C_{c}(\mathbb{R})\right]$ is dare in $L^{\prime}(\mathbb{R}) \leftarrow$ amis ap....
\downarrow
$=0$ outside sone intcunl

We will rdestrfy Fwith my of its reos.

Sane gane works for $1 \leq p<\infty$.

Similer same for \mathbb{R} :
\hat{L}^{\prime} cquatulace clusses of factions f,

$$
\begin{array}{r}
f \in \mathbb{R}[c, b] \quad \forall[0, b] \\
\int_{\mathbb{R}}|f| \equiv \lim _{-N} \int_{-N}^{N}|f| f i n i t e \\
f \sim \text { if } \int_{\mathbb{R}}|f-g|=0
\end{array}
$$

Composition $S: X \rightarrow Y$

$$
T: Y \rightarrow Z
$$

T.S: $X \rightarrow Z$ is cts:

$$
\begin{aligned}
\|(T \circ S)(x)\|_{z} & \leqslant\|T\|\left\|s_{x}\right\|_{y} \\
& \leqslant\|T\|\|s\|\|x\|_{x}
\end{aligned}
$$

So $\left\|T_{0} S\right\| \leqslant\|7\|\|s\|$.
Bat strict inequalkt is possible:

$$
\begin{array}{rr}
S(y, y)=(x, 0) & \|S\|=1 \\
T(x, y)=(0, y) & \|T\|=1 \\
(T \cdot S)(x, y)=(0,0) & \|\overline{\}} \cdot S\|=0 .
\end{array}
$$

$$
B(x)=B(x, x) \quad \text { If } x \text { is Banch so is } B(x) \text { ! }
$$

Closed under addition but a lso composition.
Fomes whatis knewn as an alsobra
(vector spmee with mult that sets alons with vector spae:

$$
\begin{gathered}
\qquad A+B) C=A C+B C \\
A B \neq B A \text { in gered, that. }
\end{gathered}
$$

Oor mult is composition

This aloebra has an reatry, a unp I, $I A=A I=A \forall A$, sumoly the rdety

Some elements of $B(X)$ admut inveses, and sae do not.

$$
\begin{aligned}
& B A=I \leftarrow B \text { is a lett invese } \\
& A B=I<B \text { is a rislat incersa }
\end{aligned}
$$

both: B is an invese
O his rare of the abare.

Well focus on

$$
\begin{aligned}
& r(x)=\left(0, x_{1}, x_{2}, \ldots .\right) \\
& l(x)=\left(x_{2}, x_{3}, \ldots \ldots\right) \\
& (l \circ r)(x)=x
\end{aligned}
$$

continuas incerses, and then
l is r's left invese
r is $l^{\prime} s$ right inuose

$$
(r \circ R)(1,0, \ldots,)
$$

I doon't lune a left rivese.

$$
\begin{gathered}
(L \circ l)(x)=x \\
x=(1,0, \ldots) \\
l(x)=0 \\
L(l(x))=0 \neq x \text { no muitter ulat } x 13
\end{gathered}
$$

Thu: If $\begin{gathered}x \text { eos } A \in B(x) \text { and }\|A\|<1 \text { than }\end{gathered}$
I A is muatible and

$$
(I+A)^{-1}=\sum_{k=0}^{\infty} A^{k}
$$

Pf: Note $\left\|A^{k}\right\| \leq\|A\|^{k}$. Since $\sum_{k=0}^{\infty}\| \|^{k}$ cruses to $\frac{1}{1-\|A\|}$ (this uses $\|A\|<1$), So does $\sum_{k=0}^{6}\left\|A^{k}\right\|$ ad have the series is $a b s$ canc \Rightarrow caweget.

$$
\operatorname{Now}(I-A) \sum_{k=0}^{A N} A^{k}=I-A^{k+1}
$$

and $A^{|\alpha|} \rightarrow 0$.

$$
A B_{n} \rightarrow A B \quad\left\|A B_{1}-A B\right\| \leq\|A \mid\| B_{1}-B \|!
$$

So $(I-A) \sum_{k=0}^{\infty} A^{k}=I$.
But $\sum_{k=0}^{N} A^{k}(I-A)=I-A^{N+1}$ as well....

What is this samus?

I is the finest invectible opeator amond. If we jiggle I by a bit

$$
T=I-A
$$

(A sit being $\|A\|<1$) then ther vosult is nuetible as well.

Exacase: If B has a continuas inoese
and $\|A\| \leq\left\|B^{-1}\right\|^{-1}$ tha $B+A$ has a contioners

$$
\begin{aligned}
& \quad B+A=B\left[I+B^{-1} A\right] \\
& \left\|B^{-1} A\right\| \leq\left\|B^{-1}\right\|\|A\|
\end{aligned}
$$

Cor: The set of elements of $B(Y, Y)$ with cantons inverses is pea.

Pf: Suppose $T \in B(x, \tau)$ has in reese τ ?
Suppose $\quad\|A\|<\left\|T^{-1}\right\|^{-1}$.

Observe $\quad T+A=T\left(I+T^{-1} A\right)$.

Mocevor, $\left\|T^{-1} A\right\| \leqslant\left\|T^{\top}\right\|\|A\|<1$.

So $T+A$ is a composition of carious invertible mus and is invertible: (ad its).

$$
(T+A)^{-1}=\left(I+T^{-1} A\right)^{-1} T^{-1} .
$$

But the there is a bull of values $\varepsilon=\left\|\tau^{-1}\right\|^{-1}$ about T mande of the set of if livertible sups.

Baire Categay Theorem

A complete metric spuce is not a coontuble onien of nouhne donse sets.

Noiluere dase: \bar{A} doos not centan an open ball.
E.g. \mathbb{Q} with uscoul metric.

Sivgletas are valce larse. $(a-\varepsilon, a+\varepsilon) \cap Q$ is a ball.
Q is a cantuble unin of its sivoletens, so it con't be

Let's apply, than retwen to it

