The: If y is Baandh,
$B(x, y)$, with opentor nom, is a Bacah space.

Pf: Let $\{T$,$\} be Caudy in B(x, y)$.
Let $x \in X$.

$$
\begin{aligned}
\left\|T_{n} x-T_{m}\right\| & =\left\|\left(T_{1}-T_{m}\right)(x)\right\| \\
& \leqslant\left\|T_{n}-T_{m}\right\|\|x\|
\end{aligned}
$$

So $\left\{T_{1} \times\right\}$ is Carky in Y and conveges to a limat T_{x}.

I clain that T is lineringad $T_{1} \rightarrow T$.
condent,
For $x, z \in X, \quad T(x-z)=\lim T_{n}(x+z)$

$$
\begin{aligned}
& =\lim T_{x}+T_{1} z \\
& =T_{x}+T_{z} .
\end{aligned}
$$

ete.

Recall (audy sequesos are baudd, so $-1,\left\|T_{1}\right\| s M$ Notive $\left\|T_{x}\right\|=\ln \left\|T_{1} \times\right\|$
bince $\left\|T_{1} \times\right\| \leqslant\left\|T_{1}\right\|\| \|_{x} \|$
$\leq M H * \|$ for all a,

$$
\left\|T_{x}\right\| \leq M\|x\|
$$

So $\|T\| \leq M$ and T is banded.

To slow $T_{1} \rightarrow T$ suppose $\|x\| \leq 1$. Olosena

$$
\left\|\left(T_{1}-T\right)(x)\right\|=\lim _{m \rightarrow \infty}\left\|\left(T_{1}-T_{m}\right) \times\right\|
$$

Let $\varepsilon>0$.
Pirk N so if $m m \geqslant N \quad\left\|T_{1}-T_{m}\right\|<\varepsilon$
So $\quad\left\|\left(T_{1}-T\right)(x)\right\| \leqslant \varepsilon\|x\| \leqslant \varepsilon$ if $n \geqslant V$.
Iie. $\quad\left\|T_{1}-T\right\| \leqslant \varepsilon$ if $n \geqslant N$.

Prop: Suppose X is a normed linen space.
Then there exists a Banach space Y
and a map $T: X \rightarrow Y$ such that

1) $\left\|T_{x}\right\|_{x}=\|x\|_{y} \quad \forall x \in X$
2) $\overline{T X}=Y_{i}$
e.g. Z with l^{2} nomen, his l^{2} as a completion. We often visualize $X \subseteq Y$ by id. with $T X$
(1) Such a ump is called an isometry. It preserves distress
Pf: Let \tilde{Y} be the set of Candy sequaces in Y.
I will identify two candy servers $\left(x_{1}, \ldots\right)$
$\left(z_{1}, \ldots\right)$
if $\left(x_{1}, 2, \ldots\right)$ is still (candy, and waite $\left(x_{1}\right) \geq\left(m_{1}\right)$

Borg: $\quad\left(x_{n}\right) \sim\left(x_{1}\right)$
$\left(x_{1}\right) \sim\left(y_{1}\right) \Rightarrow\left(x_{1}\right) \sim\left(x_{1}\right)$
$\left(x_{1}\right) \sim\left(y_{1}\right)\left(y_{1}\right) \sim\left(z_{1}\right) \Rightarrow\left(x_{1}\right) \sim\left(z_{1}\right)$
Y : set of aqua classes.

Exercise: Y is a vector space

Note $\left|\left\|x_{n}\right\|-\left\|x_{m}\right\|\right| \leqslant\left\|x_{1}-x_{n}\right\|$

So $\quad \operatorname{lom}\left\|x_{1}\right\|$. exists.

Exercise: if $\left(x_{1}\right) \sim\left(z_{1}\right), \ln \left\|\left(x_{n}\right)\right\|={ }_{\uparrow}\left\|\left(z_{1}\right)\right\|$.
$\left\|\left[\left(x_{n}\right)\right]\right\|$ is lam $\left\|x_{1}\right\|$.

Exorcise: $\|\cdot\|$ is a nom on Y.
e. 5 .

$$
\begin{aligned}
\left\|\left[\left(x_{1}\right)\right]\right\|=0 & \Rightarrow \lim \left|x_{1}\right|=0 \\
& \Rightarrow \mid \operatorname{man}_{1} x_{1}=0 \\
& \Rightarrow\left(x_{1}, 0, x_{2}, 0, \ldots\right) \rightarrow 0 \\
& \Rightarrow\left(x_{1}\right) \sim(0) .
\end{aligned}
$$

Mop from X to $Y: \quad X \rightarrow(x)$. Clearly as roach

Incise of X is dense:

$$
(x, \ldots,) \quad \varepsilon>0
$$

x_{N}

Y is complete.
10 U

We call Y a completion of X.

Thus: Suppose X is a hound spues, Y is a Banc space, and suppose W is dense in X.
Given $\left.S \in B(\omega, \psi) \quad \exists!T \in B(x, \varphi) T\right|_{\omega}=S$, ad $\|T\|=\|s\|$

Application: Completions are essentially unique.

$$
\begin{aligned}
& X \xrightarrow{T_{1}} Y_{1} \\
& X \xrightarrow{T_{2}} Y_{2} \\
& \begin{array}{l}
\text { isometries } \\
\overline{T_{i} X}= \\
T_{i} \\
T_{2} \cdot T_{1}^{-1}=T_{1}(x) \rightarrow Y_{2} \\
\uparrow \\
\frac{T_{1}(x)}{}=Y_{1}
\end{array}
\end{aligned}
$$

is $T: Y_{1} \rightarrow Y_{2}$, unique

$$
T\left(T_{1}(4)\right)=T_{2}(x)
$$

Mover: $\quad T_{1}\left(x_{1}\right) \rightarrow y_{1}$

$$
\begin{aligned}
\left\|T_{y_{1}}\right\| & =\mid \lim \left\|T T_{1} x_{1}\right\| \\
& =\operatorname{Icom}\left\|T_{2} x_{1}\right\|=\operatorname{lin}\left\|_{x_{1}}\right\|
\end{aligned}
$$

Pf: Let $x \in X$ al pick $\omega_{n} \rightarrow X$.
Obsere $\mid\left\|S w_{n}-S w_{m}\right\|\|\leqslant\| S\left(w_{n}-w_{m}\right) \|$
$\leqslant\|s\|\left\|w_{n}-w_{m}\right\|$

So $\left\|S w_{1}\right\|$ is candy anc converos to a lanit y
Moneover, if $\hat{w}_{n} \rightarrow x$ than

$$
\begin{aligned}
& w_{1}-\hat{w}_{1} \rightarrow 0 \\
& S\left(w_{1}-\hat{w}_{1}\right) \rightarrow 0 \quad \text { by confrnity. } \\
& S u_{1} \rightarrow y \quad S \hat{w}_{1} \rightarrow \hat{y} \\
& S\left(w_{1}-\hat{w}_{1}\right) \rightarrow y-\hat{y} \Rightarrow y=\hat{y} .
\end{aligned}
$$

We befiee $T_{x}=$ lim Swan .

Need to verity a) τ is linem
b) T is bounded.
c) $\|T\|=\|s\|$
a: Given x, \tilde{x}

$$
\begin{aligned}
w_{n} & \rightarrow x \quad \hat{w}_{n} \rightarrow \hat{x} \\
T(x+\hat{x}) & =\operatorname{lm} S\left(w_{n}+\hat{w_{1}}\right) \\
& =\operatorname{lm} S w_{n}+\lim S \hat{w}_{1} \\
& =T_{x}+T_{\hat{x}}
\end{aligned}
$$

ditto for scalar malt.
b) $\left\|T_{x}\right\|=\lim _{m}\left\|S w_{n}\right\|$

But $\left\|s w_{1}\right\| \leq\|s\|\left\|w_{n}\right\| \rightarrow\|s\|\|x\|$.
So $\left\|T_{x}\right\| \leq\|s\|\|x\|$. So $\|(T) \leq\| s \|$.
c) Exease: $\|t\| \geqslant\|s\|$.
finally, if T^{\prime} is mother such given $x \in X$,

$$
T^{\prime}(x)=\operatorname{lm} \tau^{\prime}\left(\omega_{1}\right)=\lim S(\ln)-T x_{2}
$$

So T is unique.

