This is just the identic mp.

Lea: Suppose $T: X \rightarrow Y$ is continuous at $x=0$. Than T is continuous.

Pf: Suppose $x_{n} \rightarrow x$ in X.
Then $x_{1}-x \rightarrow 0$ in x ad

$$
T\left(x_{1}-x\right) \rightarrow T(0)=0 \text { in } \check{i} .
$$

But $T\left(x_{n}-x\right)=T\left(x_{n}\right)-T(x)$ for all.
Thus $\operatorname{lam} T(x)-T(x)=0$ al
$\operatorname{lm} T\left(x_{1}\right)=T(\alpha)$.

Upshot: Not continuous at $0 \Rightarrow$ not continues.
Of course, $\&$ cts \Rightarrow cts at 0 .
So T is continuous if if $i s$ ats at O.

Lemma: If $T: X \rightarrow Y$ is continuous, then there exists $K>0$ such that
$\|T(x)\|_{y} \leqslant K\|x\|_{X} \quad$ fer all $x \in X$

Pf: By continuity, there exists $\delta>0$ so if $\|x-0\|_{x}<\delta$,

$$
\|T(x)-T(0)\|<1 .
$$

Ie. if $\|x\|_{x}<\delta \Rightarrow\|T(x)\|_{Y}<1$
Let $K=\frac{2}{\gamma}$ and suppose $x \neq 0$.
Than $z=\frac{x}{k^{\|x\|} \|}$ salisfies $\|z\|=\frac{\delta}{2}<\delta$.
So $\|T z\|_{y}<1$.
Hence $\left\|T \frac{x}{k\|k\|}\right\|<1$ and $\|T(x)\|<k\|x\|$.
This still holds for $x=0$ also ad we ore dar.

Cor: If T is cts, there is a K,

$$
\|T(x)\| \leqslant K
$$

for all $k \in X,\|x\| \leqslant 1$.

The bull of radius 1 is sent inside the ball of radius K.

Lena: Suppose $\exists K,\|T x\| \leq K$ So r all $x \in X$, $\|x\| \leq 1$. Than $\left\|T_{x}\right\| \leq K\left\|_{x}\right\| \quad \forall x \in X$.

Pf: Suppose $x \neq 0$. Then $\|x /\| x x \|=1$ as

$$
\left\|T\left(\frac{d}{\|x\|}\right)\right\| \leqslant K \Rightarrow\|T(x)\| \leq K\|x\|
$$

Def: We say $T=x \rightarrow i$, inorg is bounded if

$$
\begin{gathered}
\exists K, \quad\left\|T_{x}\right\| \leq K \quad \forall x,\|x\| \leq 1 \\
\text { or } \quad\left\|T_{a}\right\| \leq K\|x\| \quad \forall x .
\end{gathered}
$$

We've proud:
If T is cts $\Rightarrow T$ is banded

Prop: If T is baudry then T is cts.
Pf: Suppose $\alpha_{1} \rightarrow 0$.
Then $0 \leq\left\|T_{x_{1}}\right\| \leq K\left\|x_{1}\right\| \rightarrow 0$.
So T is ats at O, an hence offs.

Let's redo that example:

$$
\begin{aligned}
& \left(z, l^{\infty}\right) \rightarrow\left(z, l^{\prime}\right) \\
& x_{n}=\underbrace{(1, \ldots, 1,0, \ldots)}_{n} \\
& \left\|c_{1}\right\|_{\infty}=1 \quad \\
& \left\|T_{x_{n}}\right\|_{1}=n \Rightarrow \text { not branded! } \Rightarrow \text { not ats. } \\
& \text { so for no } k \quad\left\|T_{x}\right\|_{1} \leq k\left\|_{x}\right\|_{\infty,} \forall x \in z
\end{aligned}
$$

In summary:

The: Given a limen map $T=x \rightarrow \varphi$, TFAE
a) T is continues
b) T is centmous at O
c) $\exists K>0 \quad\left\|T_{x}\right\| \leq K \quad \forall x,\|x\| \leq 1$
d) $\exists k>0,\left\|T_{x}\right\| \leq k\|x\|$ for all $x \in X$.

$$
C[0,1], L^{\infty} \text { vs } C[0,1], L^{\prime}
$$

A
$A \rightarrow B$ is ats
$B \rightarrow A B$ not ats
egg. f_{1} :

$$
\left\|f_{n}\right\|_{1}=\frac{1}{21} \rightarrow 0 \text {. So } f_{1} \xrightarrow{L_{1}} 0
$$

Bat $\left\|f_{1}\right\|_{\infty}=1$ for all n. So $f_{1} \xrightarrow{L_{\infty}} 0$.

$$
\left(1 \leq K \frac{1}{2 n} \quad \forall 1 \text { is impossible }\right)
$$

Suppose $\|f\|_{\infty} \leq 1$.
Then $\|f\|_{1}=\int_{0}^{1}|f| \leq \int_{0}^{1} 1=1$.
Thus $B \rightarrow A$ is bounded + here cts.

$$
\begin{aligned}
& \text { e.g. } y \in l^{2} \\
& T(x)=\langle x, y\rangle \quad \\
& |T(x)| \leqslant l^{2} \rightarrow R \\
& K y\left\|_{2}\right\| x \|_{2} \\
& K \text { Sy } C-S .
\end{aligned}
$$

$$
\begin{aligned}
& \text { e.9. } \begin{array}{l}
y \in l^{\infty} \\
T: l^{\prime} \rightarrow \mathbb{R} \\
T(x)=\sum y_{k} x_{k} \\
|T(x)| \leqslant \sum\left|y_{k}\right| \|_{k} \mid
\end{array} \begin{aligned}
&\|y\|_{\infty} \sum\left|x_{k}\right| \\
&=\underbrace{N \|_{\infty}}_{K}\|x\|_{c}
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { e.s: } y \in l^{\infty} \quad & T_{i} l^{\prime} \rightarrow l^{\prime} \\
& T_{x}=\left(y_{1} x_{1}, y_{2} x_{2}, \ldots\right) . \\
\left\|T_{x}\right\|_{1}=\sum\left|x_{k} y_{k}\right| \leq\|y\|_{\infty}\|x\|_{r} \text { as a bave. }
\end{array}
$$

Much hadree:

$$
\begin{aligned}
l^{2} \leq l^{\infty} \quad \sum\left|x_{k}\right|^{2} & <0 \\
& \Rightarrow x_{k} \rightarrow 0
\end{aligned}
$$

Is this map continuars?
(Stay Tured for the Banads lso Thim).
$P \rightarrow \underset{\substack{\text { polynamials } \\ \text { on }[0,1]}}{L^{\infty} \text { norm. }}$

$$
\begin{aligned}
& I(p)=\int_{0}^{x} p(t) d t . \quad I: P \rightarrow P . \\
& |(I(p))(x)|=\left|\int_{0}^{x} p(t)\right| \leqslant|x|\left\|_{p}\right\|_{\infty} \leqslant\left\|_{\rho}\right\|_{\infty}
\end{aligned}
$$

T.e. $\|I(\rho)\|_{\infty} \leq \| p\left(\|_{\infty}\right.$, so I is cts.

Derivutares?

$$
\begin{aligned}
p_{n}(x) & =x^{n} \quad\left\|p_{n}\right\|_{\infty}=1 \\
\left\|D\left(p_{n}\right)\right\| & =n \quad\left\|x^{n-1}\right\| \\
& =n
\end{aligned}
$$

So inge of unit bull is arbauded.
So not contmuaus (!).

Notation: $B(X, Y)$: continues (bended) linear mars fun x to Y.

This is a vector space in a natural way!

If $\left\|T_{x}\right\| \leq K\left\|_{x}\right\| \quad \forall x$ ad $K^{\prime} \geqslant K \quad\left\|T_{x}\right\| \leqslant K^{\prime}\left\|\left.\right|_{x}\right\|$ also.

But the least such K might be inteskis.

$$
\left.k=\inf f k:\left\|T_{x}\right\| s K\|x\| \quad \forall x \in X\right\} \text {, }
$$

$$
\text { For an } x \text {, if } k \geqslant k \quad\left\|T_{x}\right\| \leqslant\|\leqslant\| x \| \quad \forall x \in X_{,-\infty}
$$

$$
\left\|T_{x}\right\| \leqslant k\|x\| \text { also. }
$$

$$
\frac{\|T x\|}{\|x\|} \leq k \quad \text { for } \quad \| \quad x \neq 0 \text {. }
$$

And infect $k=\sup _{x \rightarrow 0} \frac{\left\|T_{x}\right\|}{|k| \mid}$.

Def: Given a linen $T: X \rightarrow Y$,

$$
\|T\|=\sup _{x \rightarrow 0} \frac{\left\|T_{x}\right\|}{\|x\| .}
$$

I claim $\|\cdot\|$ i 3 a rom an $B(y, y)$.

Eudertly $\|T\| \geq 0$.

$$
\begin{aligned}
& \text { If }\|T\|=0 \Rightarrow\left\|T_{x}\right\|=0 \quad \forall x \neq 0 \mathrm{ad} T=0 . \\
& \begin{aligned}
\|\alpha T\|=\sup _{x \rightarrow 0} \frac{\left\|\alpha T_{x}\right\|}{\|x\|} & =\sup _{\alpha \neq 0} \frac{|\alpha| \| T_{\alpha} \mid}{|A|} \\
& =|\alpha|\|T\| .
\end{aligned}
\end{aligned}
$$

As for A,

$$
\begin{aligned}
\|(T+s)(x)\| & \leqslant\|T x\|+\left\|S_{x}\right\| \\
& \leqslant\|T\|\left\|_{x}\right\|+\|s\|\|x\|
\end{aligned}
$$

for $x=0$

$$
\frac{\|(T+5) \times\|}{\|x\|} \leq\|\pi\|+\|5\|
$$

So $\sup \frac{\|(T+5) \times\|)}{\|x\|} \leqslant\|T\|+\|s\|$.

Note: if $x \neq 0$ ad $z=\frac{x}{\|x\|}$,

$$
\frac{\left\|T_{x}\right\|}{\|x\|}=\frac{\left\|T_{2}\right\|}{\|z\|}
$$

So $\sup _{x \neq 0} \frac{\left\|T_{x}\right\|}{\|x\|}=\sup _{\|x\|=1}\left\|T_{x}\right\|$.

Also, $\sup _{\|x\| \leqslant 1}\left\|T_{x}\right\|=\sup _{\|x\|=1}\left\|T_{x}\right\|$

