Last class: Facts abaut subspuces:
a) If X is a Bmach space, $s \leq X$ is a Barach spuce \Leftrightarrow it is abso.
b) If S is a sunhoance so is \bar{S}
c) If X is a a.vis al $5 s i 3$ a subspure, if it is complete, then it is closed.

Fram c), if $S \subseteq X$ is foniteding it is closed:

Them: Suppose X is a normed space ad $Y \leq X$ s a closed subspace, $\zeta \neq X$.

Given $\alpha \in(0,1)$ than exists $x_{\alpha} \in X$ with $\left\|x_{\alpha}\right\|=1$ and $\left\|x_{\alpha-y}\right\|>\alpha \quad \forall y \in Y$.

Almost option: $\|x-y\| \geqslant 1$
is ideal, but most typically attamuble.

Pf: Prick $x \in X Y$.
Let $d=\inf \|x-y\|$. Observe $d>0$, other sse is $y_{n} \rightarrow x$.

Sure $\alpha^{-1}>1, \exists x \in Y, \quad\|x-q\|<\alpha^{-1} d$.
(z 13 m aspics
closest point.
Let $\quad x_{\alpha}=\frac{x-z}{\|x-q\|}$, so $\left\|x_{a}\right\|=1$.

If $y \in Y$

$$
\begin{aligned}
\left\|x_{\alpha}-y\right\| & =\left\|\frac{x-z}{\|x-z\|}-y\right\| \\
& =\frac{1}{\|x-z\|}\|\underbrace{x-z-\|x-z\|_{y} \|}_{\in Y}\| \\
& >\frac{d}{\|x-z\|} \\
& >\alpha
\end{aligned}
$$

Cor: If X is infante dinmasibeal, $K=\{x \subset x: \| x \mid=1\}$. not compact.
Pf: Let $x_{1} \in K$.
Let $S_{1}=\operatorname{span}\left(x_{1}\right)$. Then S_{1} is forte dmasionl and hance closed. There is $x_{2} \in X,\left\|_{c_{2}}\right\|=1$,

$$
d\left(x_{2}, s_{1}\right) \geqslant \frac{1}{2}
$$

Let $S_{z}=\operatorname{span}\left(\alpha_{1}, x_{2}\right)$. The S_{2} is finite dim and closed. The is $x_{3} \in X \quad \| x_{3} l\left(=1, d\left(x_{3}, \delta_{2}\right) \geqslant 1 / 2\right.$.

Exercise: K is closed.
Exercise: closed subsets of compactspaees are capet.
Cor: If x is int $d m$,
$\{x:\|x\| \leq 1\}$ is not compact.

Pf: If it were, K wald be a closed subset of a compuetspaces al hare conduct!

Next up: If complete, absolute caversuce \Rightarrow convesuce.

$$
\sum_{n=1}^{\infty} x_{n} \text { mans } \lim _{k<\infty \rightarrow \infty} \frac{\sum_{k=1}^{N} x_{1}}{S_{N} \text {, pontiac sums. }}
$$

Aperies is abs. conk. if $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ coweses.
(From calc, abs. conv $\Rightarrow \operatorname{conv}$).

Thun: Suppose X is a Baruch space.
If $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ converges, than so does $\sum_{n=1}^{\infty} x_{1}$.
Power: it reduces convernice in X (complicated!) to conversance in \mathbb{R}.
Let $S_{n}=\sum_{k=1}^{n} x_{k}$
Pf. Let $T_{1}=\sum_{k_{k=1}=1}^{n}\left\|x_{k}\right\|$.
Since $\sum_{k=1}^{\infty}\left\|x_{k}\right\|$ converses, $\sum T_{n} \zeta_{\mu-1}^{\infty}$ is Cauchy.
Let $\varepsilon>0$. There exists N such that $A u_{1}>1 \geq N$

$$
\left|T_{m}-T_{1}\right|<\varepsilon
$$

But for this same W, if \quad m $>n \geqslant N$,

$$
\begin{aligned}
\left\|S_{m}-S_{n}\right\|=\left\|\sum_{k=n+1}^{m} x_{k}\right\| & \leqslant \sum_{k=n+1}^{m}\left\|_{k}\right\| \\
& =\left|T_{m}-T_{n}\right| \\
& <\varepsilon .
\end{aligned}
$$

Thus $\left\{S_{\text {m }}\right\}$ is Gaudy. Sure X is a Burch space, the science of partial suns convesps.

In fuct: cerese also!
If X is a nivis and evey abs conu serres conueses, then X is complete!

Gidad HW?

Bunch spuces are the muin pluners, but thene ss a subcatesory that is especrally important.
Rase of spuces: $l^{p} \quad 1 \leqslant p \leqslant \infty$
shound be $O \leqslant \frac{1}{p} \leqslant 1$
Mid point: $p=2, \frac{1}{p}=\frac{1}{2}$.
These spucas lune an exdm stmations ar inuen praduct.

Recall: an inner pruduct on a uector space X is ned
$a \operatorname{map}\langle\cdot, \cdot\rangle: X \times x \rightarrow \mathbb{R}$
satiofyus

1) for all $y \in X$
bilinear

$$
\begin{aligned}
& f(x)=\langle x, y\rangle \text { is linew } \\
& \langle x+2, y\rangle=\langle x, y\rangle+\langle x, y\rangle \\
& \langle a x, y\rangle=\alpha\langle x, y\rangle
\end{aligned}
$$

2) for all $x \in X \quad g(y)=\langle x, y\rangle$ is luan

Symmetric $[3\rangle\langle y, y\rangle=\langle y, x\rangle \quad \forall x, y \in X$
positue
4) $\langle x, x\rangle \geqslant 0 \quad \forall x \in X$
det.
5) $\langle x, x\rangle=0 \Leftrightarrow k=0$

An inner praduct is a symnetric, pos.def. Silinum form.

Over (1) The rule is a bit different.

$$
\begin{aligned}
& \langle;,\rangle: \psi_{x} X \rightarrow \mathbb{C} \\
& \langle x, y\rangle=\overline{\langle y, x\rangle} \\
& \langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle \quad \text { like before } \\
& \langle x, \alpha y\rangle=\bar{\alpha}\langle x y\rangle
\end{aligned}
$$

e.g. on $\mathbb{R}^{n}\langle x, y\rangle=x^{\top} \cdot y=\sum_{k=1}^{n} x_{k} y_{k}$

$$
\text { on } \mathbb{C}^{n}\langle x, y\rangle=\bar{y}^{\top} \cdot x=\sum_{k=1}^{n} x_{k} \bar{y}_{k} \text {. }
$$

Given an inner product, we obtain a nom via

$$
\|x\|=\sqrt{\langle x, x\rangle}
$$

Had port is Δ inez.

$$
\begin{aligned}
\left\|x+\lambda_{y}\right\| & =\|x\|^{2}+\left\langle x, \lambda_{y}\right\rangle+\left\langle\lambda_{y}, x\right\rangle+\left\langle\lambda_{y}, \lambda_{y}\right\rangle \\
& =\|x\|^{2}+2 \operatorname{Re}(\lambda\langle x, y\rangle)+|\lambda|^{2}\|y\|^{2} \\
& \leqslant\|x\|^{2}+2|\lambda\langle x, y\rangle|+|\lambda|^{2}\|y\|^{2} \\
& =\|x\|^{2}+2|\lambda||\langle x, y\rangle|+|\lambda|^{2}\|y\|^{2}
\end{aligned}
$$

Now use a discrimment argomat ad

$$
\begin{aligned}
\|x+\lambda y\| \geqslant & \Rightarrow \\
& |\langle x, y\rangle|^{2} \leqslant\|x\|^{2}\|y\|^{2}
\end{aligned}
$$

ad

$$
|\langle x, y\rangle| \leqslant\|\alpha\|\|y\| .
$$

This is, aguin, the C-S inequality, for ay nuer prudect, complek or not.

Exercise: Show $\|\cdot\|$ is a nome. (S in eq vire $C-S$).
e.g. $C[0,1] \quad\langle f, 0\rangle=\int_{0}^{1} f_{g}$.

Next HW: not complete!

Def: A Hilbert space 15 an inner product space that is complete w.r.t. The induced nom.
important identities for i,p.s paces

1) parallelogram law

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{e}\right)
$$

Application: \mathbb{R}^{2} with e^{\prime} nom is not an isp. space.

$$
\begin{array}{ll}
x=(1,-1) & \|x+y\|^{2}=4 \\
y=(1,1) & \|x-y\|^{2}=4 \\
& \|x\|^{2}=4 \\
& \|y\|^{2}=4 \\
4+4 \neq 2(y+4)
\end{array}
$$

b) polarization:
$(\mathbb{R}) \quad 4\langle x, y\rangle=\|x+y\|^{2}-\|x-y\|^{2}$
(4) $\quad 4\left\langle\langle, y\rangle=\|x+y\|^{2}-\|x-y\|^{2}\right.$

$$
+i\left[\|x+i y\|^{2}-\|x-i y\|^{2}\right]
$$

As a consequere, the nom detemies the ier product.

