Last class: Facts about subspaces:

a) If X is a Bunneh space, SEX is a Bunneh space at it is about 6) If S is a subgoace so is 5 c) If X is a n.u.s at SE is a subspuce, if it is complete than it is closed. From c), if S S X is faniteday, it is closed: by 2 classing ago

Thm: Suppose X is a normed space and YEX.s a closed subspace, Y = X. Given de (0,1) there exists x & X with ||xall= | and ||xa-y|| > x & Y & Y & Y . Almost optimal: "Is ideal, but not typically attainable. Pf: Pick x & XVY Let d=inf ||x-y||. Observe d70, otherwise is yn = x. YEY 5me 21>1, Izer, Ilx-gll < à'd. appros closest point. Let $x_{\alpha} = \frac{x - y_{\alpha}}{\|x - y_{\alpha}\|}$, so $\|x_{\alpha}\| = 1$.

Ifye,

 $> \propto$.

Cor: If X is infante dimensional, K= ExcX: 11x1+13.15 not compect.

Pf: Let XIE K.

Let $S_1 = Span(x_1)$. Then $S_1 = S_1$ funite domension and have closed. There is $x_2 \in X_1$ || $u_2 || = 1$,

 $d(x_2, 5,) \neq \frac{1}{2}$

Let Sz = span (x, x). Thin Sz is finite dim and closed. There is xz EX 11x21(-1, d(xz, 52) > 1/2.

Continung inductively, Exn 3 has not Caudy sub seq: 11×+×+1/2 2 N4m

Exercise: K is closed.

Exercise: closed subsets of compact spaces are cpct.

Cor: If Xis inf day, 2x: 11x11 ≤ 13 not compact.

Pf: If it were, K would be a closed subset of a computspace, al have compact.

Next up: If complete, absolute conside = conversione.

eo E Xn mous live Z Xn n=1 Alzeo h=1 SN, pendioul sums. A servis is abs. conv. of Slixill convegos.

(From calc, abs. conv => conv).

Thim: Suppose X is a Barucha space.

If ZIXA II CONVESOS, then so loss ZXA.

Power: it reduces conveynce in X (complicated!) to convegence in R. Let $\Im_n = \underbrace{\widehat{\Sigma}}_{k=1} \times \mathbb{E}$ Pf. Let $T_n = \underbrace{\widehat{\Sigma}}_{k=1} || \times \mathbb{E} ||$. Since Silling conversors, ST, 300, is Country.

Let EDO. There exists N such that it misned

L ε.

Tm-Ty)<E.

But for this same by it wish >N

 $\| S_{on} - S_n \| = \| \sum_{k=n+1}^{m} x_k \| \leq \sum_{k=n+1}^{m} \| x_k \|$ $= | T_m - T_n |$

Thus 25m3 is Cauly. Surce X is a Borech space, the scheme of partial suns converges.

In fact: conese also!

If X is a nus and every abe conv so serves converses, then X is complete!

Gridned MW?

Birach spaces are the muin pluyers, but There is a subcortesory that is especially important.

Ruse of spaces: l^P I < p < 00

should be 05 p ≤ 1

 M_{id} point: p=2, $p=\frac{1}{2}$.

These spaces have a extra structure on inner praduct.

Recall: an inter pruduet on a vector spece X.s a map <.,->: XxX > R salisfyns []) for all ye X f(x)= < x, y> 13 Imen a iliner form (X+2,47 = (4,47+ (54) form (X,47 = x (4,47) bilinen 2) for all x 6 X 9(4)= < X, Y 7 10 luan [3] (x,y)= (x,x) #x,y eX Symmetric positive def. (5) (4

An ime product is a symmetric, pos. des. Silvien form.

Over I the rule is a bit different.

(:,.7: Xx X -> C (x,x) = (x,x) $\langle x, y+z \rangle = \langle x, y \rangle + \langle x, z \rangle$ like before $\langle x, y+z \rangle = \overline{x} \langle x, y \rangle$

Given an inac product, we obtain a norm via

 $\|\mathbf{x}\| = \int \langle \mathbf{x}, \mathbf{x} \rangle$

Hand part is A where.

 $\|x + \lambda y\| = \|x\|^2 + \langle x, \lambda y \rangle + \langle \lambda y, x \rangle + \langle \lambda y, \lambda y \rangle$

 $= |1 \times 1|^{2} + 2 \operatorname{Re} (\lambda < \times, \gamma >) + |\lambda|^{2} ||\gamma||^{2}$

 $\leq ||x||^{2} + 2 |\lambda \langle x, y \rangle | + |\lambda|^{2} ||y||^{2}$ $= ||x||^{2} + 2 |\lambda| |\langle x, y \rangle | + |\lambda|^{2} ||y||^{2}$

 $\|x + y\| \ge 0 = 7$ $\|\langle x + y \rangle\| \ge \|\langle x + y \rangle\|^{2} \le \||x||^{2} \|y\|^{2}$

al

12447 1 5 11211 11411.

This is, again, the C-S inequality, for my

une prudeck, complex or not.

Exercise: Show IIII is a norm. (Sing via CS).

e.g. C[0,1] $\langle f,0\rangle = \int_0^1 fg$.

Next HW: not complete!

Def: A Hilbert space is an inner product space that is complete wir.t. the induced norm.

important chendities for i.p. s paces

A A X-Y

1) pour lelogun lan

 $\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$

(Sum of sques of four sudas = Sum of sques of drosons!) Application: R2 with l' rom is not an i.p. space.

x= (1,-1) $||x+y||^2 = 4$ $\gamma = (1, 1)$ $\|_{\ell-\gamma}\|^2 = 4$ $||x||^2 = 4$ 1/11= 4 414+2(++4) 6) polarization: (R) $(4 < x, y) = ||x+y||^2 - ||x-y||^2$ (4) $4 \langle x_{17} \rangle = \|x_{17}\|^2 - \|x_{17}\|^2$ $+ \tilde{c} \int ||x + \tilde{c}y||^2 - ||x - \tilde{c}y||^2 \int$

As a consequere, le rom determos le

mer product.