6) Oper sets, closed sets Z_{0} as complenert
7) poant of closve $n \rightarrow x$
o $\bar{A}=U$ of all pounts of chose
a) A is closed iff $A=\bar{A}$
8) C 13: $x_{n} \rightarrow x \rightarrow f\left(x_{n}\right) \rightarrow f(x)$
$\left(\varepsilon-\delta, a l s_{0}\right)$
9) Cpct: seqs hue cont sids sess

A set $U \leq X$ is open if $\forall x \in U \quad \exists r>0$,

$$
B_{p}(x) \subseteq U \frac{B_{x}(r) \rightarrow \text { wow }}{r \text { depeels on } x .}
$$

A set $A \leq x$ is closer if A^{c} is open. $x \in X$ is a closure point of $A \in X, f$ there is a seq $\left(x_{n}\right) \leq A$,

$$
x_{1} \longrightarrow x .
$$

\bar{A} is the sect of closure points of A.

$$
A \subseteq \bar{A}=w h ?
$$

Exercise: If A is closed, $\bar{A} \subseteq A$.
HW Strategy: If $x \in A_{,}^{c}$, show x is not a point of closure

As a consequence $\bar{A}=A$ if A is closed.
Clullese: \bar{A} is closed.
Suppose to control \bar{A}^{c} is not open. So for each n $B_{\frac{1}{n}}(p) \notin A^{c}$. So for each n $\exists x \in B_{\frac{1}{n}}(p) \cap A$.

We will show \bar{A} is open.
Suppose to produce a contradiction that \bar{A}^{c} is not open.
Then there exists $p \in \bar{A}^{c}$ such that for all $\varepsilon>0, B_{\varepsilon}(p) \nsubseteq \bar{A}^{c}$.
Thus for each $n \in \mathbb{N}$ we con find $\bar{a}_{n} \in \bar{A}$ with $\bar{a}_{1} \in \mathbb{B}_{\frac{1}{2 n}}(p)$.
But then, sauce $\bar{a}_{1} \in \bar{A}$ there is $a_{n} \in A$ with $d\left(a_{n}, \bar{a}_{n}\right)<\frac{1}{2 n}$. Notree, for each n,

$$
\begin{aligned}
d\left(a_{1}, p\right) & \leqslant d\left(a_{n}, \bar{q}_{n}\right)+d\left(\bar{a}_{n}, a_{n}\right) \\
& <\frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n} .
\end{aligned}
$$

Thus, $\quad \lim _{n \rightarrow \infty} d\left(a_{n}, p\right)=0 \quad$ and $\quad a_{n} \rightarrow p$.
I.e. $\left\{a_{1}\right\}$ is a se in A converses to p. Sop $\in \bar{A}$.

Yet $p \in \bar{A}^{c}$, a contradiction

Df: $f: X \rightarrow Y$ is continucers at $x \in X, f$ whenever $x_{n} \rightarrow x$ in $X, \quad f\left(x_{1}\right) \rightarrow f(x)$ in Y. It is cts, if cts $\forall x$.
Thm: f is ots iff wherever $U \leqslant Y$ is oper, $f^{-1}(u) \subseteq x$ is open.

$$
f^{-1}\left(A^{c}\right)=f^{-1}(A)^{c} \text { so also for closed! }
$$

e.g. Frx $p \in X$. Define $f(x)=d(x, p), \quad f i x \rightarrow \mathbb{R}$.

Cla.m: f is ts. Firx. Let $\varepsilon>0$. Pick $\delta=\varepsilon$. If $d(x, z)<\delta$,

$$
|f(x)-f(z)|=|d(x, p)-d(z, p)|
$$

But

$$
\begin{aligned}
& d(<, p) \leqslant d(x, z)+d(z, p)<\delta+d(z, p) \\
& d(z, p) \leqslant d(x z)+d(x p)<\delta+d(x, p)
\end{aligned}
$$

So

$$
-\varepsilon=-\delta<d(x, p)-d(z, p)<\delta=\varepsilon .
$$

I.e. $\quad|d(\alpha, p)-d(z, p)|<\varepsilon$.

Compact:
$A \leq X$ is compeat if whenver $\left\{x_{1}\right\} \subseteq A$ is
a sequace, it admits $\left\{x_{1}\right\}, x_{1} \rightarrow \alpha \in A$ for sone a.
Tham (Bolzuo-Weiostass)
$A \subseteq \mathbb{R}$ is conpuct \Leftrightarrow it is closed and boanded.

If X is an robidm space and $A \subseteq X$ is conpact, A is closed + bouded:
bouded: $\exists p, r \quad X \subseteq B_{r}(p)$.
Not bouddel: $\forall p, r \exists x \in X, x \notin \operatorname{Br}(p)$.

Compuat sets are boundel:
If not boudrel, find $p, x_{n} ' s \quad d\left(x_{n}, p\right)>n$.
If $x_{\wedge_{k}} \rightarrow x$

$$
d\left(y_{n_{k}}, p\right) \rightarrow d(x, p) \quad \text { (use } \Delta \text { meq!) }
$$

But $d\left(x_{n_{k}}, \rho\right) \geq n_{k} \rightarrow \infty$.

Compuct scts are closed:
Suppose x_{n} is a sequice in $A, x_{1} \rightarrow x$.
Need to shum $x \in A$.
Is $\left\{x_{n_{k}}\right\}, x_{1_{k}} \rightarrow a \in A$.
But $x_{1_{k}} \rightarrow x$ (subse of canv have sme in.f.).
By uncuenss of Inaits, $x=a \in A$.

But convese is not true.
l_{∞} : set of bended sequeres

$$
\begin{aligned}
& x=(x(1), x(2), x(3), \ldots) \\
& d(x, y)=\sup _{k}(|x(k)-y(k)|) \\
& x_{1}=(1,0, \ldots) \\
& x_{2}=(0,1,0, \ldots .)
\end{aligned}
$$

No Cancly sulsey, so no comversent eithen

No con subs sequax: $d\left(x_{1}, x_{m}\right)=1 \quad n \neq m$.
So no Cuncly subsequince.

Prop: If $A \in X$ is compact and $f: X \rightarrow Y$ is ats,
$f(A)$ is compact.
Pf: Let $\left\{y_{k}\right\}$ be a sanverce in $f(A)$.

$$
\forall k \exists x_{k} \in t, f\left(x_{k}\right)=y_{k} .
$$

By comactress of $A, \exists\left\{x_{k_{j}}\right\} \quad x_{k_{j}} \rightarrow a \in A$.
But then, by contiuntry $f\left(x_{k j}\right) \rightarrow f(a)$.
That $15, \quad y_{k_{j}} \rightarrow f(a) \in f(A)$.

Cor: If $f: X \rightarrow \mathbb{R}$ is contirmas and X is compact, $\exists x_{\text {mas }}, x_{\text {mas }}$ such that

$$
f\left(x_{\text {man }}\right) \leq f(x) \leq f\left(x_{\text {max }}\right) \quad \forall x \in X .
$$

Pf: Let $m=$ in $f(x) \subseteq \mathbb{R}$; since $f(x)$ is boudur), is finite ad since $f f(x)$ is closed $f(x)$ The $x_{m} \in-x, \quad f\left(x_{m}\right)=m$. Eurdart,
$f\left(y_{m}\right) \leqslant f(x)$
D. tho to mod.

Pf: Observe that X is closed and bounded.
Let $m=\inf f(x) \quad(m \leqslant b \forall b \in f(x)$, ad if an oiler $\hat{i n}$ has this property $\hat{\text { on }} \leq m$).

Let in be a sequace in $f(X)$ cowesis b inf $f(x)$

For each a, pick $x_{1}, f\left(x_{1}\right)=y_{n}$.
Then $\left\{x_{1}\right\}$ huns a subsquequin $X, \quad x_{n_{k}} \rightarrow x$.
but then $f\left(x_{k}\right) \rightarrow f\left(x_{x}\right)$ I.e. $y_{k} \rightarrow f(x)$.
But $y_{k} \rightarrow m$, ad $f(x)=m$.

Lena: If $f: X \rightarrow \mathbb{C}$ where x is spot, there exists R such rut

$$
f(x) \subseteq B_{R}(0)
$$

Pf: Compact sets are bailed.
X compact
$C_{\mathbb{F}}(x) \quad \mathbb{F}=\mathbb{R}$ on \mathbb{C} mene space.
Idea: First show is a vector space. So $f-g \in C_{F}(x)$ if, f, save.
Then:

$$
d(f, g)=\sup _{x \in X}|f(x)-g(x)| \quad f-g \text { is cts! }
$$

Δ in:

$$
\text { For an } \begin{aligned}
x, \quad|f(x)-g(x)| & \leq|f(x)-h(x)|+|h(x)-g(x)| \\
& \leq d(f, h)
\end{aligned}
$$

Now tula as up!

A norm on a vector space is a faction $X \rightarrow \mathbb{R}$ $\|x\|$
satsfing

1) $\|x\| \geqslant 0,\|x\|=0 \Leftrightarrow x=0 \quad \forall x \in \mathbb{X}$
2) $\|\alpha x\|=|\alpha|\|x\| \quad \forall \alpha \in \mathbb{F}, x \in X$
3) $\|x+y\| \leqslant\|x\|+\|y\|$.

Fram thes, we set a metric:

$$
d(x, y)=\|x-y\| .
$$

This metric is compatalde with v.s. opention:

$$
\left.\begin{array}{rl}
d(x+z, y+z)= & d(x, y)
\end{array} \quad \begin{array}{r}
\quad \text { presacuad unte } \\
\text { fruslation) }
\end{array}\right] \begin{aligned}
d(\alpha x, \alpha y)=\|\alpha(x-y)\| & =|\alpha| \| x-y| | \\
& =\left.\right|_{\alpha} \mid d(y y)
\end{aligned}
$$

Execcise: d is a norm
e.g: $\quad \mathbb{R}^{n} \quad\|x\|=\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{1 / 2}$
1), 2) trivial.
3):

Lomu: If $x, y \in \mathbb{R}^{n}$,

$$
|x-y| \leq\|x\|\|y\|
$$

Pf: $\left\|x-\lambda_{y}\right\|^{2}=\|x\|^{2}-2 \lambda x \cdot y+\lambda^{2}\|y\|^{2} \geqslant 0$
desc sitamuant $\leq 0: 4(x-y)^{2}+4\|x\|^{2}\|+\|^{2}$

$$
\Rightarrow|x \cdot y|>
$$

