A sequere in a metric space is $\left\{x_{k}\right\}_{k=1}^{\infty} \quad x_{k} \in X \quad \forall k$.
$(\mathbb{N} \rightarrow X$, formally)

A distance lets you detectif sequaces converge.

Def: $\left\{x_{k}\right\}$ conurgestox $\left(x_{k} \rightarrow x\right)$

$$
\lim _{k \rightarrow \infty} x_{k}=x
$$

if $\forall \varepsilon>\gamma \quad K$ such that if $k \geqslant K$,

$$
d\left(x_{k}, x\right)<\varepsilon .
$$

For each choice of $\varepsilon>0$, your get trapped.
e.9. $\left(2^{-k} \sin (k), 2^{-k} \cos (k)\right)=x_{k} \in \mathbb{R}^{2}$

$$
d\left(x_{k}, 0\right)=2^{-k}
$$

Given $\varepsilon>0$, pik K so sonall so that $2^{-K}<\varepsilon$. Than if $k \geqslant k$,

$$
d\left(x_{k}, 0\right)=2^{-k} \leqslant 2^{-k}<\varepsilon
$$

Lena: L suits are unique.
Pf: Suppose $\uparrow x_{1} \rightarrow x$ and $x_{1} \rightarrow y$, with $x \neq y$. to produce a contradiction

Let $\varepsilon=d(x, y)>0$. Pick N, so that if $n \geqslant N_{y}$

$$
l\left(x_{1}, x\right)<\frac{\varepsilon}{2}
$$

Pick N_{2} so if $n \geqslant N_{2}, \quad d\left(x_{1}, y\right)<\frac{\varepsilon}{2}$.
Let $N=\max \left(N_{1}, N_{2}\right)$.
Then

$$
\begin{aligned}
d(x, y) & \leqslant d\left(y, x_{N}\right)+d\left(x_{N}, y\right) \\
& <\frac{\xi}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon .
\end{aligned}
$$

But $d(x, y)=\varepsilon$, a cant.

Related notion: Cauchy sequences. "temp get closer ad "loser toosthe"

$$
\begin{aligned}
& x_{1}=3.1 \\
& x_{2}=3.14 \\
& x_{3}=3.141
\end{aligned} \quad\left|x_{n}-x_{m}\right| \leqslant 10^{-n} \quad(n \leqslant m)
$$

Def: Cauchy of $\forall \varepsilon>0 \exists N$ such that if

$$
n, n \geqslant N \text { then } d\left(x_{1}, y_{m}\right)<\varepsilon
$$

Let $\varepsilon>0$. Pred N so $10^{-N}<\varepsilon$.
If $n, m \geq N,\left|x_{1}-x_{m}\right| \leqslant 10^{-n} \leqslant 10^{-N}<\varepsilon$.

Lena: Cowegnt sequeres are candy.
Pf: Suppose $\lim _{n \rightarrow \infty} x_{1}=x$.
Let $\varepsilon>0$. Prick N so that if $n \geqslant N$,

$$
\begin{aligned}
d\left(x_{1}, x\right)<\frac{\varepsilon}{2} & \text { Then, if } n, m \geq N, \\
d\left(x_{1}, x_{m}\right) & <d\left(x_{1}, x\right)+d\left(x_{1} x_{m}\right) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon .
\end{aligned}
$$

Converse 3 not always true:
e.g. $X=(0,1)$ in \mathbb{R}, with usual rom

$$
\begin{aligned}
& x_{n}=\frac{1}{n} \quad n \geqslant 2 \\
& x_{n} \rightarrow 0 \text { in } \mathbb{R} \\
& \Rightarrow \text { Candy }
\end{aligned}
$$

but if $x_{n} \rightarrow \operatorname{xan}(0,1)$ it also converges in \mathbb{R}, which volutes oninueross of limits.

Mare sieanc: © has the same privolan.
$3,3,1,3.14, \ldots$ is Candy in Q, bit not comegent in Q_{1}

Critical concept: A metric space is complete if every
Candy sequence in it conveges.

Power: You cu detect convagent sequences without knowing what the limisit is!
6) Oper sets, closed sets Z_{0} as complenert
7) poant of closve $n \rightarrow x$
o $\bar{A}=U$ of all pounts of chose
a) A is closed iff $A=\bar{A}$
10) C 13: $x_{n} \rightarrow x \rightarrow f\left(x_{n}\right) \rightarrow f(x)$
$\left(\varepsilon-\delta, a l s_{0}\right)$
11) Cpct: seqs hue cont sids sess

A set $U \leq X$ is open if $\forall x \in U \quad \exists r>0$,

$$
B_{p}(x) \subseteq U \frac{B_{x}(r) \rightarrow \text { wow }}{r \text { depeels on } x .}
$$

A set $A \leq x$ is closer if A^{c} is open. $x \in X$ is a closure point of $A \in X, f$ there is a seq $\left(x_{n}\right) \leq A$,

$$
x_{1} \longrightarrow x .
$$

\bar{A} is the sect of closure points of A.

$$
A \subseteq \bar{A}=w h ?
$$

Exercise: If A is closed, $\bar{A} \subseteq A$.
HW Strategy: If $x \in A_{,}^{c}$, show x is not a point of closure

As a consequence $\bar{A}=A$ if A is closed.
Clullese: \bar{A} is closed.
Suppose to contra A^{c} is not open. So for each n $B_{\frac{1}{n}}(p) \notin A^{c}$. So for each n $\exists x \in B_{\frac{1}{n}}(p) \cap A$.

Df: $f: X \rightarrow Y$ is continucers at $x \in X, f$ whenever $x_{n} \rightarrow x$ in $X, \quad f\left(x_{1}\right) \rightarrow f(x)$ in Y. It is cts, if cts $\forall x$.
Thm: f is ots iff wherever $U \leqslant Y$ is oper, $f^{-1}(u) \subseteq x$ is open.

$$
f^{-1}\left(A^{c}\right)=f^{-1}(A)^{c} \text { so also for closed! }
$$

e.g. Frx $p \in X$. Define $f(x)=d(x, p), \quad f i x \rightarrow \mathbb{R}$.

Cla.m: f is ts. Firx. Let $\varepsilon>0$. Pick $\delta=\varepsilon$. If $d(x, z)<\delta$,

$$
|f(x)-f(z)|=|d(x, p)-d(z, p)|
$$

But

$$
\begin{aligned}
& d(<, p) \leqslant d(x, z)+d(z, p)<\delta+d(z, p) \\
& d(z, p) \leqslant d(x z)+d(x p)<\delta+d(x, p)
\end{aligned}
$$

So

$$
-\varepsilon=-\delta<d(x, p)-d(z, p)<\delta=\varepsilon .
$$

I.e. $\quad|d(\alpha, p)-d(z, p)|<\varepsilon$.

Compact:
$A \leq X$ is compeat if whenver $\left\{x_{1}\right\} \subseteq A$ is
a sequace, it admits $\left\{x_{1}\right\}, x_{1} \rightarrow \alpha \in A$ for sone a.
Tham (Bolzuo-Weiostass)
$A \subseteq \mathbb{R}$ is conpuct \Leftrightarrow it is closed and boanded.

If X is an robidm space and $A \subseteq X$ is conpact, A is closed + bouded:
bouded: $\exists p, r \quad X \subseteq B_{r}(p)$.
Not bouddel: $\forall p, r \exists x \in X, x \notin \operatorname{Br}(p)$.

Compuat sets are boundel:
If not boudrel, find $p, x_{n} ' s \quad d\left(x_{n}, p\right)>n$.
If $x_{\wedge_{k}} \rightarrow x$

$$
d\left(y_{n_{k}}, p\right) \rightarrow d(x, p) \quad \text { (use } \Delta \text { meq!) }
$$

But $d\left(x_{n_{k}}, \rho\right) \geq n_{k} \rightarrow \infty$.

Compuct scts are closed:
Serpose x_{n} is a sequice in $A, x_{1} \rightarrow x$.
Need to shou $x \in A$.
Is $\left\{x_{n_{k}}\right\}, x_{1_{k}} \rightarrow a \in A$.
But $x_{1_{k}} \rightarrow x$ (subse of canv have sme in.f.).
By uncuenss of Inaits, $x=a \in A$.

But convese is not true.
l_{∞} : set of bended sequeres

$$
\begin{aligned}
& x=(x(1), x(2), x(3), \ldots) \\
& d(x, y)=\sup _{k}(|x(k)-y(k)|) \\
& x_{1}=(1,0, \ldots) \\
& x_{2}=(0,1,0, \ldots .
\end{aligned}
$$

No con subs sequa: $d\left(x_{1}, x_{m}\right)=1 \quad n \neq m$.
So no Cuncly subsequince.

Prop: If $A \in X$ is compact and $f: X \rightarrow Y$ is ats,
$f(A)$ is compact.
Pf: Let $\left\{y_{k}\right\}$ be a square in $f(A)$.

$$
\forall k \exists x_{k} \in f, f\left(x_{k}\right)=y_{k} \text {. }
$$

By comactress of $A, \exists\left\{x_{k_{j}}\right\} \quad x_{k_{j}} \rightarrow a \in A$.
But then, by contiuntry $f\left(x_{k j}\right) \rightarrow f(a)$.
That is, $y_{k_{j}} \rightarrow f(a) \in f(A)$.

Cor: If $f: X \rightarrow \mathbb{R}$ is contiruars and X is compact, $\exists x_{\text {mas }}, x_{\text {mas }}$ such that

$$
f\left(x_{\text {min }}\right) \leq f(x) \leq f\left(x_{\text {max }}\right) \quad \forall x \in X .
$$

Pf: Let $m=$ in $f(x) \subseteq \mathbb{R}$; since $f(x)$ is boucher, m is finite, ad since $f f(x)$ is closed $m \in f(x)$. Thus $\exists x_{m} \in X, f\left(x_{m}\right)=m$. Eurdant,
$f\left(y_{m}\right) \leqslant f(x) \forall x_{m}$ $f\left(y_{m}\right) \leqslant f(x) \forall x$.
Ditto to max.

Lena: If $f: X \rightarrow \mathbb{C}$ where x is spot, there exists R such rut

$$
f(x) \subseteq B_{R}(0)
$$

Pf: Compact sets are bailed.
X compact
$C_{\mathbb{F}}(x) \quad \mathbb{F}=\mathbb{R}$ on \mathbb{C} mene space.
Idea: First show is a vector space. So $f-g \in C_{F}(x)$ if, f, save.
Then:

$$
d(f, g)=\sup _{x \in X}|f(x)-g(x)| \quad f-g \text { is cts! }
$$

Δ in:

$$
\text { For an } \begin{aligned}
x, \quad|f(x)-g(x)| & \leq|f(x)-h(x)|+|h(x)-g(x)| \\
& \leq d(f, h)
\end{aligned}
$$

Now tula as up!

