An antiderivative of a function $f(x)$ is a function $F(x)$ with $F^{\prime}(x)=f(x)$.
If $F(x)$ is a particular antiderivative of $f(x)$, then so is $F(x)+C$ for any constant C.
If the domain of $f(x)$ is an interval, and if $F(x)$ is a particular antiderivative of $f(x)$, then any antiderivative has the form $F(x)+C$ for some constant C.
If $F(x)$ and $G(x)$ are antiderivatives of $f(x)$ and $g(x)$ then

- $a F(x)$ is an antiderivative of $a f(x)$ for any constant a.
- $F(x)+G(x)$ is an antiderivative of $f(x)+g(x)$.

1. Find a particular antiderivative of $x-x^{2}+9$.
2. Find all antiderivatives of $x-x^{2}+9$.
3. Find an antiderivative of $1 / x^{2}$.
4. If $F(x)$ is your answer to the previous problem, does every antiderivative of $1 / x^{2}$ have the form $F(x)+C$ for some constant C ?
5. For each of the following functions, find a particular antiderivative.

Function	Antiderivative
x	
x^{2}	
x^{3}	
$x^{k}(k \neq-1)$	
x^{-1} for $x>0$	
x^{-1} for $x<0$	
x^{-1} for all x	

Function	Antiderivative
$\sin (x)$	
$\cos (x)$	
e^{x}	
$1 /\left(1+x^{2}\right)$	
$\sec ^{2}(x)$	
$\sec (x) \tan (x)$	
1	

6. Compute three different antiderivatives of $f(x)=x^{20}+4 x^{10}+8$
7. Compute an antiderivative of $f(t)=\frac{5 \sec t \tan t}{3}-4 \sin t-\frac{1}{t}+e^{2}$
8. Compute an antiderivative of $f(x)=\cos (3 x)$.
9. Compute the antiderivative of $f(t)=t^{2}$ that equals 5 when $t=2$.
10. A particle moves in a straight line and has acceleration given by $a(t)=5 \cos t-2 \sin t$. Its initial velocity is $v(0)=-6 \mathrm{~m} / \mathrm{s}$ and its initial position is $s(0)=2 \mathrm{~m}$. Find its position function $s(t)$.
11. A stone is dropped from a cliff and hits the ground three seconds later. How high is the cliff? (Acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.)
12. What constant acceleration is needed to take a car from 10 mph to 60 mph in 5 seconds?
