In the first part of this worksheet we will get to know a method for computing an approximation of $\sqrt{2}$ to many digits of accuracy using only addition, subtraction, multiplication and division, and indeed using only a few such operations.

1. Consider the function

$$
F(x)=x^{2}-2 .
$$

If we solve $F(a)=0$ for some $a \geq 0$, what is the value of a ?
2. Find the linearization $L(x)$ of $F(x)$ at $x=2$. Leave your answer in point-slope form.
3. I've graphed $F(x)$ for you below. Add to this diagram the graph of $L(x)$.

4. Find the number x_{1} such that $L\left(x_{1}\right)=0$.
5. What good is the number x_{1} ? Keep in mind that you want to solve $F(x)=0$. You solved $L(x)=0$ instead.
6. In the diagram above, label the point x_{1} on the x-axis.
7. Let's do it again! Find the linearization $L(x)$ of $F(x)$ at $x=x_{1}$.
8. Add the graph of this new linearization to your diagram on the first page.
9. Find the number x_{2} such that $L\left(x_{2}\right)=0$. Then label the point $x=x_{2}$ in the diagram.
10. To how many digits does x_{2} agree with $\sqrt{2}$
11. Let's be a little more systematic. Suppose we have an estimate x_{k} for $\sqrt{2}$.

- Compute $F\left(x_{k}\right)$.
- Compute $F^{\prime}\left(x_{k}\right)$.
- Compute the linearization of $F(x)$ at $x=x_{k}$.

$$
L(x)=
$$

- Find the number x_{k+1} such that $L\left(x_{k+1}\right)=0$. You should try to find as simple an expression as you can.

12. Starting with $x_{0}=2$, compute x_{1} and x_{2} with your shiny new formula. Verify that they agree with your earlier expressions for x_{1} and x_{2}.
13. Compute x_{4}. To how many digits does it agree with $\sqrt{2}$?

Newton's Method In General

We wish to solve $F(x)=0$ for a differentiable function $F(x)$. We have an initial estimate x_{0} for the solution.
14. Try to solve

$$
e^{-x}-x=0
$$

by hand.
15. Explain why there is a solution between $x=0$ and $x=1$.
16. Starting with $x_{0}=1$, find an approximation of the solution of $e^{-x}-x=0$ to 6 decimal places. During your computation, keep track of each x_{k} to at least 10 decimal places of accuracy.

