Mean Value Theorem. If $f$ is a continuous function on an interval $[a, b]$ that has a derivative at every point in $(a, b)$, then there is a point $c$ in $(a, b)$ where

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

1. Suppose $f$ is a continuous function on $[a, b]$ that has a derivative at every point of $(a, b)$. Suppose also that $f(b) \leq f(a)$. What can you conclude from the Mean Value Theorem?
2. Suppose $f$ is a continuous function on $[a, b]$ that has a derivative at every point of $(a, b)$, and that $f^{\prime}(x)>0$ for each $x$ in $(a, b)$. Thinking about your answer to problem 1 , what can you conclude about $f(a)$ and $f(b)$ ?
3. A function is said to be increasing on an interval $(a, b)$ if whenever $x$ and $z$ are in the interval and $x<z$, then $f(x)<f(z)$. It is decreasing if whenever $x$ and $z$ are in the interval and $x<z$, then $f(x)>f(z)$ Sketch an example of a function that is increasing on $(1,3)$ and decreasing on $(3,5)$.

## Increasing/Decreasing Test

Your answer to problem 2 implies the first item below; the second is justified by a similar argument.

- If $f^{\prime}(x)>0$ on an interval $(a, b)$ then $f$ is increasing on the interval.
- If $f^{\prime}(x)<0$ on an interval $(a, b)$ then $f$ is decreasing on the interval.

4. Use the increasing/decreasing test to find intervals where

$$
f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+7
$$

is increasing and intervals where it is decreasing.
5. Find the critical points of the function $f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+7$ from the previous problem. There should be two, $c_{1}$ and $c_{2}$ with $c_{1}<c_{2}$. Just pay attention to $c_{1}$.

1. Just to the left of $c_{1}$ is the function increasing or decreasing?
2. Just to the right of $c_{1}$ is the function increasing or decreasing?
3. Now decide intuitively, based on these two observations, if $f$ has a local min, local max, or neither at $c_{1}$.
4. Repeat the previous exercise for the other critical point $c_{2}$.

You have just sketched the argument that justifies the following:
First Derivative Test
Suppose $f$ is a function with a derivative on $(a, b)$, and if $c$ is a point in the interval with $f^{\prime}(c)=0$.

- If $f^{\prime}(x)>0$ for $x$ just to the left of $c$ and $f^{\prime}(x)<0$ for $x$ just to the right of $c$, then $f$ has a $\qquad$ at $c$.
- If $f^{\prime}(x)<0$ for $x$ just to the left of $c$ and $f^{\prime}(x)>0$ for $x$ just to the right of $c$, then $f$ has a $\qquad$ at $c$.

7. The function $f(x)=x e^{x}$ has exactly one critical point. Find it, and then use the First Derivative Test to determine if a local minimum or local maximum occurs there.
8. Consider the function $f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+7$. Find intervals such that the derivative of $f(x)$ is increasing or decreasing.
9. Earlier you computed that $f^{\prime}(-3)=0$. Is $f^{\prime}$ increasing near $x=-3$ or decreasing near $x=-3$ ? Which of the following two scenarios must we have?


You have just sketched out justification for the following.

## Second Derivative Test

Suppose $f$ is a function with a continuous second derivative on $(a, b)$, and that $c$ is a point in the interval with $f^{\prime}(c)=0$.

- If $f^{\prime \prime}(c)>0$ then $f$ has a $\qquad$ at $c$.
- If $f^{\prime \prime}(c)<0$ then $f$ has a $\qquad$ at $c$.

10. Use the Second Derivative Test to determine if $f(x)=x e^{x}$ has a local min/max at its only critical point.
11. Consider the function $f(x)=x^{3}$. Verify that $f^{\prime}(0)=0$. Then decide what the Second Derivative Test has to say, if anything, about whether a local $\min /$ max occurs at $x=0$.

## First Derivative Test (Final Case)

- If $f^{\prime}(c)=0$ and $f^{\prime}(x)<0$ on both sides of $c$ or $f^{\prime}(x)>0$ on both sides of $c$, then there is neither a local min nor a local max at $c$.

12. Decide what the First Derivative Test has to say, if anything, about whether a local min/max occurs at $x=0$ for $f(x)=x^{3}$.
