Consider the function $f(x)=x^{2}$ on the interval $[-1,3]$

1. Find the slope of the secant line of the graph of $f(x)$ from $x=-1$ to $x=3$.
2. Find a value of x in $[-1,3]$ where $f^{\prime}(x)$ equals the value you found in problem 1 .
3. Make a sketch of the graph of $f(x)$ and add to it the secant line from problem 1 and the tangent line at the location found in problem 2. What property do the secant line and tangent line have?
4. Repeat the exercise of problems $1-3$ with $g(x)=1 / x$ on $[1,5]$.
5. Repeat the exercise of problems $1-3$ with $\sin (x)$ on $[0,2 \pi]$.

Mean Value Theorem. If f is a continuous function on an interval $[a, b]$ that has a derivative at every point in (a, b), then there is a point c in (a, b) where

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

6. What is the geometric meaning of the value $\frac{f(b)-f(a)}{b-a}$?
7. Consider the function $f(x)=|x|$ on $[-1,1]$. The Mean Value Theorem would say that there is a c in $(-1,1)$ where

$$
f^{\prime}(c)=\frac{|-1|-|1|}{1-(-1)}=0
$$

Is there such a point? Why doesn't this violate the Mean Value Theorem?

Rolle's Lemma (Baby Mean Value Theorem). If f is a continuous function on an interval $[a, b]$ that has a derivative at every point in (a, b), and if $f(a)=f(b)$, then there is a point c in (a, b) where

$$
f^{\prime}(c)=0 .
$$

8. Why is this a special case of the Mean Value Theorem?
9. Draw a picture that illustrates Rolle's Lemma.

Proof of Rolle's Lemma:

10. Suppose f is a continuous function on $[a, b]$ and $f^{\prime}(x) \geq 0$ for every x in (a, b). How do $f(a)$ and $f(b)$ compare?
11. Suppose f is a continuous function on $[a, b]$ and $f^{\prime}(x) \leq 0$ for every x in (a, b). How do $f(a)$ and $f(b)$ compare?
12. Suppose f is a continuous function on $[a, b]$ and $f^{\prime}(x)=0$ for every x in (a, b). How do $f(a)$ and $f(b)$ compare?
13. Suppose on some interval (a, b) that $f(x)=C$ for some constant C. What can you say about $f^{\prime}(x)$ on (a, b) ?
14. Suppose $f^{\prime}(x)=0$ on an interval (a, b). Then there is a constant C such that $f(x)=C$ for all x in (a, b). Why?
15. Suppose $f^{\prime}(x)=g^{\prime}(x)$ on an interval (a, b). Then there is a constant C where $g(x)=$ $f(x)+C$. Why?
16. Suppose a car is traveling down the road and in 30 minutes it travels 32.7 miles. What does the Mean Value Theorem have to say about this?

Proof of Mean Value Theorem

