1. Sketch the graph of a function with domain $[-3,3]$ that has an absolute maximum of 5 at $x=-2$, an absolute minimum of 0 at $x=2$ and a local minimum of 2 at $x=0$.
2. Give an example of a function with domain $(-1,1)$ that does not attain either an absolute minimum or an absolute maximum value. Why doesn't your example violate the Extreme Value Theorem?
3. Sketch a discontinuous function with domain $[-1,1]$ that attains a minimum but does not attain a maximum value. Why doesn't your example violate the Extreme Value Theorem?
4. Give an example of a continuous function with domain $[0, \infty)$ that attains a minimum but does not attain a maximum value. Why doesn't your example violate the Extreme Value Theorem?
5. Consider the function $\sec (x)$. Sketch this function. From the sketch answer the following. Does this function have any absolute maximums? Absolute minimums? Local maximums? Local minimums?
6. Find all critical points of the function $f(x)=\sin (x)^{1 / 3}$.
7. Find the absolute maximum and minimum values of $f(x)=e^{-x^{2}}$ on the interval $[-2,3]$, and the locations where those values are attained.
8. Find the maximum and minimum values of $f(x)=x+\frac{1}{x}$ on the interval [1/5,4]. Determine where those maximum and minimum values occur.
9. Find the maximum and minimum values of $f(x)=x^{2 / 3}$ on the interval [-8,8]. Determine where those maximum and minimum values occur.
10. A ball thrown in the air at time $t=0$ has a height given by

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g_{0} t^{2}
$$

meters where t is measured in seconds, h_{0} is the height at time $0, v_{0}$ is the velocity (in meters per second) at time 0 and g_{0} is the constant acceleration due to gravity (in $\mathrm{m} / \mathrm{s}^{2}$). Assuming $v_{0}>0$, find the time that the ball attains its maximum height. Then find the maximum hight.

