## Vocabulary

Suppose $f(x)$ is a real-valued function with domain $D$ and suppose $c$ is a point in $D$.

1. $f(c)$ is an absolute maximum value for $f$ if $f(c) \geq f(x)$ for each $x$ in $D$.
2. $f(c)$ is a (absolute) minimum value for $f$ if $f(c) \leq f(x)$ for each $x$ in $D$.
3. $f(c)$ is a local maximum value for $f$ if $f(c) \geq f(x)$ for each $x$ in $D$ near c .
4. $f(c)$ is a local minimum value for $f$ if $f(c) \leq f(x)$ for each $x$ in $D$ near $c$.
5. We say $c$ is a critical point for $f$ if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

## Key Tools

1. [Fermat's Theorem] If $f(c)$ is a (local or absolute) maximum/minimum value, and if $f$ is defined on both sides of $c$, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
2. [Extreme Value Theorem] If the domain of $f$ is a closed, bounded interval, and if $f$ is continuous, then $f$ is guaranteed to have both a maximum and a minimum value.

So, to find a maximum or minimum value for a function defined on an closed, bounded interval $[a, b]$, look in all of the following locations:

1. The end points.
2. The critical points.
3. Find the maximum and minimum values of $f(x)=x-x^{1 / 3}$ on the interval $[-1,4]$. Determine where those maximum and minimum values occur.
4. Find the maximum and minimum values of $f(x)=x+\frac{1}{x}$ on the interval [1/5,4]. Determine where those maximum and minimum values occur.
5. Find the maximum and minimum values of $f(x)=x^{2 / 3}$ on the interval [-8,8]. Determine where those maximum and minimum values occur.
