1. The average BAC of eight male subjects was measured after consumption of 15 mL of ethanol. The resulting data were modeled by the concentration function

$$
C(t)=0.0225 t e^{-0.0467 t}
$$

where t is measured in minutes after consumption and C is measured in $\mathrm{mg} / \mathrm{mL}$.
(a) How rapidly was BAC increasing after 10 minutes?
(b) How rapidly was BAC decreasing half an hour later?
2. The brightness of a star in units of m_{V} (apparent magnitude) is given by

$$
B(t)=4.0+0.35 \sin \left(\frac{2 \pi t}{5.4}\right)
$$

where t is measured in days. Find the rate of change of brightness after one day and interpret your answer. Include units.
3. A mass on a spring is oscillating. Its height at time t is

$$
h(t)=2 e^{-\frac{3}{2} t} \sin (2 \pi t)
$$

where t is measured in seconds and h is measured in centimeters.

1. Make a sketch of $y=2 e^{-\frac{3}{2} t}, y=-2 e^{-\frac{3}{2} t}$ and $y=h(t)$.
2. Find the velocity of the mass at time t in general and at time $t=1$ second in particular.
3. Compute $\lim _{t \rightarrow \infty} h(t)$ and interpret what this means.
4. Find all the locations where the tangent to the curve $y=2 \cos (x)+\cos ^{2}(x)$ is horizontal.
5. Compute $f^{\prime}(t)$ if $f(t)=e^{a t} \sin (b t)$, where a and b are constants.
6. Find $y^{\prime \prime}$ if $y=\cos (\sin (3 x))$.
