1. The volume of a snowball of radius r is $V(r)=(4 / 3) \pi r^{3}$, where r is measured in inches and V is in measured in inches cubed. Explain what $V^{\prime}(2) \approx 50.265$ means in language your parents could understand.
2. If you increase the radius of a snowball from 2 inches to 2.02 inches, estimate the change in volume of the snowball.
3. Compute $\frac{d}{d x} \tan (x)$
4. Compute $\frac{d}{d x} \sec (x)$
5. Compute the second derivative $\frac{d^{2}}{d x^{2}} e^{x} \cos (x)$
6. A 12 foot ladder rests against a wall. Let θ be the angle between the ladder and the wall and let x be the distance from the base of the ladder and the wall.
a. Compute x as a function of θ.
b. How fast does x change with respect to θ when $\theta=\pi / 6$?
