Linearization

Given a function $f(x)$, its linearization at $x=a$ is the function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

For example, if $f(x)=\sqrt{x}$ and $a=4$ then $f(4)=2$ and $f^{\prime}(4)=1 /(2 \sqrt{4})=1 / 4$. So

$$
L(x)=2+\frac{1}{4}(x-4)
$$

The graph of the linearization is just the tangent line to the curve $y=\sqrt{x}$ at $x=4$. So we expect that $L(x)$ is a good approximation for \sqrt{x} for x near 4 . The point is that computing square roots is hard work (even if your calculator makes it look easy) but computing the value of a linear function like L is easy. In fact your calculator is doing a more sophisticated generalization of the linear approximation: stay tuned in Calculus II!

1. Use the linear approximation of $f(x)=\sqrt{x}$ at $x=4$ to approxmiate $\sqrt{4.1}$ and compare your result to its approximation computed by your calculator.
2. Use the linear approximation to approximate the cosine of $29^{\circ}=\frac{29}{30} \frac{\pi}{6}$ radians.
3. Find the linear approximation of $f(x)=\ln (x)$ at $a=1$ and use it to approxmate $\ln (0.5)$ and $\ln (0.9)$. Compare your approximation with your calculator's. Sketch both the curve $y=\ln (x)$ and $y=L(x)$ and label the points $A=(0.5, \ln (0.5))$ and $B=(0.5, L(0.5)$
4. Find the linear approximation of $f(x)=e^{x}$ at $a=0$ and use it to approximate $e^{0.05}$ and e^{1} Compare your approximations with your calculator's.

Differentials Suppose we have a variable $y=f(x)$. We define its differential to be

$$
d y=f^{\prime}(x) d x
$$

where x and $d x$ are thought of as variables you can control. What's the point? The value of $d y$ is an estimate of how much y changes if we change x into $x+d x$. See the graph:
5. A tree is growing and the radius of its trunk in centemeters is $r(t)=2 \sqrt{t}$ where t is measured in years. Use the differential to estimate the change in radius of the tree from 4 years to 4 years and one month.
6. A coat of paint of thinkness 0.05 cm is being added to a hemispherical dome of radius 25 m . Estimate the volume of paint needed to accomplish this task. [Challenge: will this be an underestimate or an overestimate? Thinking geometrically or thinking algebraically will both give you the same answer.]
7. The radius of a disc is 24 cm with an error of $\pm 0.5 \mathrm{~cm}$. Estimate the error in the area of the disc as an absolute and as a relative error.

