Final Review - Last Day

Final Exam: Wednesday May 2 from 1:00 PM - 3:00 PM.
Section F01 (Faudree) Grue 208
Section F02 (Maxwell) Grue 206

Calculus Nutshell

1. limits
2. derivatives
3. integrals
4. How do you find/evaluate them and what do they tell you?

Chapter 5

1. (Warm-up) Evaluate.
(a) $\int_{0}^{\pi / 4} \frac{\sec ^{2} t}{\tan t+1} d t$
(b) $\int_{1}^{4} \frac{x-2}{\sqrt{x}} d x$
(c) $\int\left(\sec x \tan x+\frac{2}{\sqrt{1-x^{2}}}\right) d x$
(d) $\int \frac{x}{(x-2)^{3}} d x$
2. A particle is moving with velocity $v(t)=2 t-\frac{1}{1+t^{2}}$ measured in meters per second.
(a) Find and interpret $v(0)$.
(b) Find the displacement for the particle from time $t=0$ to time $t=4$. Give units with your answer.
(c) If D is the distance the particle traveled over the interval $[0,4]$, is D larger or smaller or exactly the same as your answer in part (b)? Justify your answer.
(d) Assuming $s(0)=1$, find the position of the particle.
3. The graph of $y=f(t)$ is displayed below. A new function is defined as $H(x)=\int_{0}^{x} f(t) d t$.

(a) Find $f(3)$.
(b) Find $g(3)$
(c) Find all x-values for which $g^{\prime}(x)=0$.
(d) Find all t-values for which $f^{\prime}(t)=0$.
(e) In the open interval $(0,7)$, when does $g(x)$ have a maximum? A minimum?
(f) When is $g(x)$ increasing?
4. Find $d y / d x$ for $y=\int_{1}^{\cos (x)}\left(1+s^{3}\right) e^{s} d s$.
5. A bacteria population is 4000 at time $t=0$ and its rate of growth is $1000 \times e^{t / 2}$ bacteria per hour after t hours. What is the population after 4 hours?
6. What, if anything, is wrong with the following calculation?

$$
\int_{0}^{5} \frac{1}{x-2} d x=\left.\ln (|x-2|)\right|_{0} ^{5}=\ln (3)-\ln (2)
$$

