Final Review - Last Day

Final Exam: Wednesday May 2 from 1:00 PM - 3:00 PM.
Section F01 (Faudree) Grue 208
Section F02 (Maxwell) Grue 206

Calculus Nutshell

1. limits
2. derivatives
3. integrals
4. How do you find/evaluate them and what do they tell you?

Chapter 5

1. (Warm-up) Evaluate.

$$
=\ln (2)-\ln (1)=\ln (2)
$$

(c) $\int\left(\sec x \tan x+\frac{2}{\sqrt{1-x^{2}}}\right) d x=\sec X+2 \arcsin X+C$

$$
\begin{aligned}
& \text { (d) } \int \frac{x}{(x-2)^{3}} d x=\int x(x-2)^{-3} d x=\int(u+2) u^{-3} d u=\int u^{-2}+2 u^{-3} d u \\
& \begin{array}{l}
u=x-2 \\
d u=2 x \\
x=u+2
\end{array} \quad=-u^{-1}-u^{-2}+c=-(x-2)^{-1}-(x-2)^{-2}+c
\end{aligned}
$$

2. A particle is moving with velocity $v(t)=2 t-1 /\left(1+t^{2}\right)$ measured in meters per second.
(a) Find and interpret $v(0)$.

$$
v(0)=0-1=-1 \mathrm{~m} / \mathrm{s} .
$$

The particle is moving to the left. Cor its position is decreasing.)
(b) Find the displacement for the particle from time $t=0$ to time $t=4$. Give units with your answer.

$$
\begin{aligned}
& \left.\int_{0}^{4} v(t) d t=\int_{0}^{4} 2 t-\frac{1}{1+t^{2}} d t=t^{2}-\arctan (t)\right]_{0}^{4} \\
= & 16-\arctan (4) \approx 14.7 \mathrm{~m}
\end{aligned}
$$

(c) If D is the distance the particle traveled over the interval $[0,4]$, is D larger or smaller or exactly the same as your answer in part (b)? Justify your answer.
$D<14.7$.
Since the velocity is initially negative bat the displacement is positive, the particle must have moved left than right 14.7 meters past its starting position.
(d) Assuming $s(0)=1$, find the position of the particle.

$$
1+14.7=15,7 \mathrm{~m} .
$$

3. The graph of $y=f(t)$ is displayed below. A new function is defined as $H(x)=\int_{0}^{x} f(t) d t$.

(a) Find $f(3)$.
(b) Find $g(3) \quad 4+\frac{1}{2}(2 \cdot 1)=5$
(c) Find all x-values for which $g^{\prime}(x)=0 . \quad \boldsymbol{X}=\mathbf{3}, 4$
(d) Find all t-values for which $f^{\prime}(t)=0$.

$$
\text { interval }(0,2), x=3.5, x=5.2, x=6.1
$$

(e) In the open interval $(0,7)$, when does $g(x)$ have a maximum? A minimum?

$$
x=3 \text { max }, x=4 \text { min }
$$

(f) When is $g(x)$ increasing?

$$
[0,3) \cup(4,7)
$$

4. Find $d y / d x$ for $y=\int_{1}^{\cos (x)}\left(1+s^{3}\right) e^{s} d s$.

$$
\frac{d y}{d x}=\left(\left(1+(\cos x)^{3}\right) e^{\cos x}\right)(-\sin x)
$$

5. A bacteria population is 4000 at time $t=0$ and its rate of growth is $1000 \times e^{t / 2}$ bacteria per hour after t hours. What is the population after 4 hours?

$$
\begin{aligned}
P(t) & =4000+\int_{0}^{4} 1000 e^{t / 2} \\
& =4000+\left[1000\left(2 e^{t / 2}\right)\right]_{0}^{4}=4000+1000\left(2 e^{2}-2 e^{0}\right) \\
& =4000+1000\left(2\left(e^{2}-1\right)\right) \text { bacteria. }
\end{aligned}
$$

4. Find $d y / d x$ for $y=\int_{1}^{\cos (x)}\left(1+s^{3}\right) e^{s} d s$.

$$
\frac{d y}{d x}=\left(\left(1+(\cos x)^{3}\right) e^{\cos x}\right)(-\sin x)
$$

5. A bacteria population is 4000 at time $t=0$ and its rate of growth is $1000 \times e^{t / 2}$ bacteria per hour after t hours. What is the population after 4 hours?

$$
\begin{aligned}
P(t) & =4000+\int_{0}^{4} 1000 e^{t / 2} \\
& =4000+\left[1000\left(2 e^{t / 2}\right)\right]_{0}^{4}=4000+1000\left(2 e^{2}-2 e^{0}\right) \\
& =4000+1000\left(2\left(e^{2}-1\right)\right) \text { bacteria. }
\end{aligned}
$$

6. What, if anything, is wrong with the following calculation?

$$
\int_{0}^{5} \frac{1}{x-2} d x=\left.\ln (|x-2|)\right|_{0} ^{5}=\ln (3)-\ln (2)
$$

$f(x)=\frac{1}{x-2}$ has a vertical asymptote at $x=2$, right in the middle of the interval: $[0,5]$. Since f is not continuous on $[0,5]$, FTC part 2 cloesn't apply.

