A perspective on the derivative

At each $x, f^{\prime}(x)$ is the slope of the tasset line at x.
\rightarrow new function j it depends in x, too!

How does this work? $f(x)=x^{2}$.

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{b \rightarrow 1} \frac{b^{2}-1^{2}}{b-1} \\
& =\lim _{b \rightarrow 1} \frac{(b-1)(b+1)}{b-1} \\
& =\lim _{b \rightarrow 1} b+1=2
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{b \rightarrow 2} \frac{b^{2}-4}{b-2} \\
& =\lim _{b \rightarrow 2} \frac{(b-2)(b+2)}{b-2} \\
& =\lim _{b \rightarrow 2} b+2=4
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{b \rightarrow a} \frac{b^{2}-a^{2}}{b-a} \\
& =\lim _{b \rightarrow a} \frac{(b-a)(b+a)}{b-a} \\
& =\lim _{b \rightarrow a} b+a \\
& =a+a=2 a
\end{aligned}
$$

$$
f^{\prime}(x)=2 x
$$

