Dermatives + Rates of Charge.
Suppose a bull is tossed in the ain
$y(t)$ is height of ball, in m. tins.

$$
\begin{aligned}
& y(0)=0,5 x y \\
& y(t)=15 t-5 t^{2} \\
& y(0)=0 \quad y(3)=15 \cdot 3-5 \cdot 3 \cdot 3=0
\end{aligned}
$$

$$
\begin{aligned}
& y(1)=10 \\
& y(2)=10 \quad 30-201
\end{aligned}
$$

Averse rates of clue of heist:

$$
\begin{array}{ll}
{[0,1]} & \frac{y(1)-y(0)}{1-0}=10 \mathrm{~m} / \mathrm{s} \\
{[1,2]} & \frac{y(2)-y(1)}{2-1}=\frac{10-10}{1}=0 \mathrm{~m} / \mathrm{s} \\
{[2,3]} & \frac{y(3)-y(2)}{3-2}=\frac{0-10}{1}=-10 \mathrm{~m} / \mathrm{s}
\end{array}
$$

$$
(1.5,45 / 4)
$$

The slopes of the three secant lines equal the avenge rates of charge oven the three tare intervals.

What is the instantaneus rate of close n heist (velocity) at $t=1$?

We can estimate: 10 or 0 , or better yet $\frac{10+0}{2}$.

To formalize:

$$
\frac{y(1+h)-y(1)}{h}
$$

interpret as either

1) aus rate of change over $[1,1+h]$
b) slope of secant line.

As we take the lent is $h \rightarrow 0$
we pick up the isstantoneng rate of chase of height
(AKA velocity)
or the slope of the target line.

Let's do it:

$$
\begin{aligned}
y(1+h) & =15(1+h)-5(1+h)^{2} \\
& =15+15 h-5\left(1+2 h+h^{2}\right) \\
& =10+15 h-10 h-5 h^{2} \\
& =10+5 h-5 h^{2} \\
y(1) & =15 \cdot 1-5 \cdot 1^{2}=10
\end{aligned}
$$

$\frac{y(1+h)-y(1)}{h}=\frac{5 h-5 h^{2}}{h} \quad$ but yod canst seth $=0$.

But $\lim _{h \rightarrow 0} \frac{5 h-5 h^{2}}{h}=\lim _{h \rightarrow 0} 5-5 h=5$

The velocity at $t=1$ is $5 \mathrm{~m} / \mathrm{s}$.
The slope of the tayat lime is 5 .

What's the equation of the tergehf lINe?

Forms $4=m x+6$ bloch.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \quad \begin{array}{l}
\text { point slope! } \\
\text { If you know } m, y_{1}, x_{1} \\
\text { Good to go. }
\end{array} \\
& \begin{array}{l}
x_{1}=1, y_{1}=10 \\
y-10=5(x-1) \\
y=5 x+5 \\
\text { slope } 5 ? \\
(1,10) ?
\end{array}
\end{aligned}
$$

This limit

$$
\operatorname{lom}_{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \text { is know so the }
$$

derivative of f at a
and has the notation $f^{\prime}(a)$.

Alternatively $b=a+h \quad(h=b-a)$

$$
\begin{aligned}
& \text { as } h \rightarrow 0, b \rightarrow a . \\
& \lim _{b \rightarrow a} \frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

You reed to know both expressions.

What does the derivative tellyac?
Fink of population at tame t

$$
\frac{P(b)-P(a)}{b-a} \quad \frac{\Delta P}{\Delta t}
$$

If b is close to $a \quad \frac{\Delta P}{\Delta t} \approx p^{\prime}(a)$

$$
\Delta P \approx P^{\prime}(a) \Delta t
$$

If you chase tame by a lithe bit Δt, the population will approximately change by $p^{\prime}(d) s t$

$$
\text { Egg. if } P^{\prime}(3)=122 \frac{\text { wily }}{\text { year }}(t \text { in years })
$$

then over 6 mothag, pop will duse ho

$$
\Delta P=P^{\prime}(3) \Delta t=122 \frac{\text { carrber }}{\text { yer }} \cdot \frac{1}{2} \text { year }=G 1 \text { conker }
$$

Now you:

The radive of a tree is grouns.

$$
r(t)=10 \sqrt{t} \quad r \mathrm{mcm}, t \text { in yeus. }
$$

a) Find the avene rate of cluse of gruill $\operatorname{Srum} t=1$ to $t=2$.
6) Find the instast rate of duge of grouth at $t=1$.
c) I pranise you

$$
r(4)=20
$$

$$
r^{\prime}(4)=5 / 2
$$

use thee fuct alone to approximate r at 4 yeus and 1 masth.

$$
20+\frac{5}{2} \cdot \frac{1}{12}
$$

Then compme yeer est.

