Continuity.

Does tampente ever do this:
a)

b)

Nah! These are examples of discontinacess functions.
a) $\quad \lim _{x \rightarrow a} f(x)$ does not exist
b) $\lim _{x \rightarrow a} g(x)$ exists, but does rat equal $g(a)$.

Def: A fuscton is contmuars if at ench a is its donain,

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

I.e. we can compute linitz by dinect substitation.
E.g. $\left.\quad \begin{array}{l}\text { polyromiels } \\ \text { rational fenctions } \\ \text { voct ferctions }\end{array}\right]$ fom $\sec 2.2$

$$
\left.\begin{array}{l}
\text { tris fanetions } \\
\text { exponatial functions } \\
\text { loy farctions }
\end{array}\right] \text { my promise to you }
$$

What absent $\lim _{x \rightarrow 3}\left(x^{2}-2\right)+10^{x}=\lim _{x \rightarrow 3}\left(x^{2}-2\right)+\lim _{x \rightarrow 3} 10^{x}$

$$
=\left(3^{2}-2\right)+10^{3}
$$

Indead, a sum of cortanues finctions rects.
Simillarly for a difference or predict. For divisuen, a little cone:

$$
\lim _{x \rightarrow 3} \frac{10^{x}}{x^{2}-2}=\frac{\lim _{\lim _{x \rightarrow 3} 10^{x}} x^{2}-2}{\lim _{x \rightarrow 3}}=\frac{10^{3}}{3^{2}-2 \text { once }} \begin{array}{r}
\text { this } \\
\text { inst } 0
\end{array}
$$

There are finer variations of contimity you shad be aware of

1) continuity at a point (Def in text)
2) one-sided continuity (Def 2 intent) (left-right)

Rules for composition

$$
\lim _{x \rightarrow 3} \sin \left(\sqrt{x^{2}+1}\right)=\sin \left(\sqrt{3^{2}+1}\right)
$$

Direct subs.
Why? $\quad \lim _{x \rightarrow a} f(g(x))=f(g(a))$ if f, g are coiturenes.
"A composition of catinues factions is continuous"

$$
\begin{gathered}
\lim _{x \rightarrow 3} \sqrt{x^{2}+1}=\sqrt{3^{2}+1}=\sqrt{10} \\
\sqrt{x} x^{2}+1 \\
\lim _{x \rightarrow 3} \sin \left(\sqrt{x^{2}+1}\right)=\sin (\sqrt{10})
\end{gathered}
$$

Important theorem:

Consider $x^{5}-3 x+1=p(x)$

$$
\begin{aligned}
& p(0)=1 \\
& p(1)=-1
\end{aligned}
$$

Somewhere in $[0,1]$ is a spot x where $p(x)=0$.

This doesit work fer discontinuous factious

$$
\begin{aligned}
& \text { e.g. } f(x)=\left\{\begin{array}{l}
1 x \geqslant 0 \\
-1 x<0
\end{array}\right] \quad 0 \\
& f(x) \neq 0 \text { ever! }
\end{aligned}
$$

Intermediate Value Theorem

If $f(x) 13$ a continuous fut ion defined an an interval $[a, b]$, for may y between $f(a)$ al $f(b)$
the is $x \in[0,6]$ with $f(x)=y$.
$\left[\begin{array}{l}\text { In panticulrs, if } f(a) \geqslant 0 \text { al } f(b) \leq 0 \text { there } \\ \text { is } x \text { in }[a, b] \text { with } f(x)=0\end{array}\right.$

e.y. is thee a number with $10^{x}=x^{2}$

$$
\begin{aligned}
& f(x)=10^{x}-x^{2} \quad \text { Wat } f(x)=0 . \\
& f(0)=1 \\
& f(-1)=\frac{1}{10}-1=-\frac{9}{10} \quad \text { Aha! }
\end{aligned}
$$

thur's a rapt sone where in Gere',

