Lust class:
Picture:

There are some variations on the limit thence you neal to know about:

Consider

We'll soy $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty . \quad\left(\lim _{x \rightarrow 0} f(x)=\infty\right.$ it the
q values of f con be mode

- ∞ is also as lase (al positive) as yen possible wish takes x close to a (hat $x=c$ is int requised)

$\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist.
But we hare ore-suded Inuits:
$\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty \longleftarrow$ from the right (orly $x>0$ is under consithention)
$\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \longleftarrow$ from the left

We con also have one-siched limits in othor contexts:

Heavisude fanction

$$
H(x)= \begin{cases}1 & x \geqslant 0 \\ 0 & x<0\end{cases}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} H(x)=1 \\
& \lim _{x \rightarrow 0^{-}} H(x)=0
\end{aligned}
$$

Important fuct: if $\lim _{x \rightarrow a^{+}} f(x)=2$ and $\lim _{x \rightarrow a^{-}} f(x)=M$

1) If $L=M \quad \lim _{x \rightarrow a} f(x)=L(=M)$
2) If $L \neq M, \lim _{x \rightarrow n} f(x)$ d.n.e.
