Last class: On work sheet derived ara age rate of charge formula. For distance:
$\frac{\text { chase in distance }}{\text { change in time }}$
$O_{\text {veer }}$ time intoval $\left[t_{0}, t_{1}\right]$, with $d(t)$ distance traveled

$$
\frac{d\left(t_{1}\right)-d\left(t_{0}\right)}{t_{1}-t_{0}} \quad \frac{\text { change in } d_{5} t}{\text { clause in } t_{0}}
$$

or, over time internal $\left[t_{0}, t_{0}+h\right]$

$$
\frac{d\left(t_{0}+h\right)-d\left(t_{0}\right)}{h}
$$

h is the leash of the time eintecul. So $h=0$ should get you speed right at t_{0} ! But no:

$$
\text { if } h=0: \quad \frac{d\left(t_{0}\right)-d\left(t_{0}\right)}{w h o h!} \xrightarrow{\text { whit }}=\frac{0}{0}<\text { wow. }_{\text {big who oh. }}
$$

Instead, we can approx innate the speed at $t=t_{0}$
by taking h very small, with the hope that
as h goes to O the upporcumation gets better and better.
12. Instead, we can work with average speeds over short time intervals near time $t=41$ minutes. Use the spreadsheet to compute the average speeds over the time intervals $[41,41+h]$ for:
(a) $h=1$ minutes $\quad 1.113414664$ miles/minute
(b) $h=0.1$ minutes 1.108981788 miles/minute
(c) $h=0.01$ minutes 1.108373364 miles/minute
(d) $h=0.001$ minutes 1.108310877 miles/manute
(e) $h=0.0001$ minutes 1.108304617 miles/minute
(f) $h=0.00001$ minutes 1.108303986 miles/minute

$$
s(h)=\frac{d(41+h)-d(41)}{h}
$$

is perfectly well defend near $h=0$, bat in t at $h=0$.

Groph of s hus a hole at $h=0$.

We need to cope with functions with holes and to discuss the values they me supposed to have to "foll in" the hole.

More examples...

Average rates of change ane't just for aped!

If a quantity depends on time, we compute averse rates of chase this way:
$\underset{\text { change in time }}{\text { change in quantity }} \rightarrow$ average rate of charge
e.g. our friends the caribou:

$$
p(t)=1000(1.1)^{t}
$$

Compute the avenge rate of charge n the population over the first year and over the 2 ${ }^{\text {nd }}$ year:
first year: $\frac{p(1)-p(0)}{1-0}=\frac{1100-1000}{1}=100 \frac{\text { cariban }}{\text { year. }}$ second your $\frac{p(2)-p 4)}{2-1}=\frac{1210-1100}{1}=110 \frac{\text { cariban }}{\text { year. }}$

The slope of the secant line on the graph tells you an avenge rate of change.

What about right at $t=1$? 100 is probably too little 110 is probably too much.

One estate: $\frac{160+110}{2}=105 \frac{\text { coribeens }}{\text { year }}$
G that's a slope, too! $\frac{p(2)-p 10)}{2-0}=\frac{1210-1000}{2}$

$$
=\frac{210}{2}=105
$$

For simplizity:

$$
\text { is } \begin{aligned}
\frac{p(1+h)-p(1)}{h} & =\frac{1000(1.1)^{1+h}-1000(1.1)}{h} \\
& =1100\left[\frac{(1.1)^{h}-1}{h}\right]
\end{aligned}
$$

For small choices of h, get an averse nate of change over a short interval.
e. $9 \quad h=\frac{1}{2} \quad(1 / 2$ year $)$
aug. rate of change 107.38 cariban per yours.

$$
\begin{array}{ll}
h=0.1 & 105.34 \\
h=0.01 & 104.89 \cdots \\
h=0.0001 \quad 104.84169 \\
h=0.0000001 & \underbrace{104.841199}_{1}
\end{array}
$$

\rightarrow look like thyme settling in.
But $h=0$ is a wo no: $\frac{(1.1)^{0}-1}{0}=\frac{1-1}{0}=\frac{0}{0}$
$a(h)=1000 \frac{\left((1.1)^{h}-1\right)}{h} \rightarrow$ avenge rate of change over

$$
[1,1+h] \quad(h<0 \text { is ok! })
$$

we need to be able to talk about the value there it is
a) The (instantonews) rate of chase
b) The slope of the tangent lave to the graph.
a) 13 super important
b) 13 less so, but becanes, imporfat because of a) super

Another function with a hole:

$$
\frac{x^{2}-1}{x-1} \quad x=1: \quad \frac{0}{0} \longleftarrow \text { uh oh! }
$$

$$
\frac{(x-1)(x+1)}{(x-1)}=x+1 \text { except at } x=1 \text {. }
$$

Another: $\frac{\sin (x)}{x}$ at $x=0=\frac{0}{0}$
 but it cont: dorsum by O !

$$
\begin{aligned}
& \frac{\sin (0.01)}{0.01} \approx 0.99998 \\
& \frac{\sin (0.001)}{0.001} \approx 0.99999983 \\
& G \rightarrow 1 ?
\end{aligned}
$$

$\frac{0}{0}$ often, but wot always, signals a function with a hole.

To deal with the hols we introduce a new concept.

We say $\lim _{x \rightarrow a} f(x)=L \quad$ if
The values of $f(x) \mathrm{cm}$ be made as close to L as we please by takin \times close enough to a (but mable not a itself).

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2 \\
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
& \lim _{h \rightarrow 0} 1000 \frac{\left((1.1)^{4}-1\right)}{h}=\frac{1100 \ln (1.1)}{\longrightarrow \text { how do I kino this! (teaser) }}=104.81197784757
\end{aligned}
$$

Pieture:

