Last class:
Population of coribou:

$$
p(t)=1000(1.1)^{t}
$$

Note: this population grows by 10% over an one yer period:

$$
\begin{aligned}
p(t+1) & =1000(1.1)^{t+1} \\
& =1000(1.1)^{t}(1.1) \\
& =p(t)(1.1) \\
& =p(t)\left(1+\frac{1}{10}\right) \\
& =p(t)+\frac{1}{10} p(t)
\end{aligned}
$$

$(t$ is anything, not just $0,1,2, \ldots)$

Q: When will the population be 2000 (double The stertors regulation)?

$$
\begin{gathered}
1000(1.1)^{t}=2000 \\
(1.1)^{t}=2
\end{gathered}
$$

Now what? We need a function that undoes epporentiation, and these are logarithms.

Recall

$$
\begin{aligned}
\log _{10}\left(10^{x}\right) & =x \\
10^{\log _{10}(y)} & =y
\end{aligned}
$$

10^{x} and $\log _{10} x$ undo each other, and ae culled inverse functions.

OTher bases re possible: $\log _{2} 2^{x}=x$

$$
\begin{aligned}
& \log _{e} e^{x}=x \\
& G \log _{e}=\ln
\end{aligned}
$$

expornt rules have companion log rules.

$$
\begin{array}{ll}
10^{x+y}=10^{x} 10^{y} & \log _{10}(a b)=\log _{10}(a)+\log _{10}(b) \\
\left(10^{x}\right)^{y}=10^{x y} & \log _{10} a^{b}=b \log _{10}(a) \\
10^{0}=1 & \log _{10}(1)=0
\end{array}
$$

For mam purposes, you are free to puck ay base (your calcs will have $\log _{10}$ ad $l_{1}=l_{\text {loges }}$ but not others)

In fact $\log _{2}$ ad $\log _{0}$ ae related:

$$
\begin{aligned}
& \log _{10}\left(2^{x}\right)=x \log _{10} 2 \\
& \log _{2}\left(2^{x}\right)=x \\
& \log _{10}(y)=\log _{2}(y) \log _{10}(2) \\
& \log _{2}(y)=\frac{\log _{10}(y)}{\log _{10}(2)}
\end{aligned} \quad \begin{aligned}
& \text { substitute } 2^{x}=y \\
& x=\log _{2}(7)
\end{aligned}
$$

This works for other bases, too.

Back to the problem:

$$
\begin{aligned}
& (1.1)^{t}=2 \\
& \ln \left((1.1)^{t}\right)=\ln (2) \\
& t \ln (1.1)=\ln (2) \\
& t=\frac{\ln (2) / \ln (1.1)}{l}=7.27 . \\
& (1.1)^{b}=2 \\
& 1.1=2^{1 / b} \\
& 1.1^{t}=2^{t / b} \\
& p(t)=1000(1.1)^{t}=1000\left(2^{t / 6}\right) . \\
& \begin{array}{l}
t=b, \quad p=2000 \\
t=2 b
\end{array} p=4000 . \quad e e^{t .} .
\end{aligned}
$$

$\log _{10}(x)$ is the inverse function of 10^{k} haw to graph it:

the roles of $x+y$ foan inverse function.

not defined hae.

