The ration of a function is a recent innovation in mathematics (early $20^{\text {th }}$ century).
Think of as a box

$$
\xrightarrow{\text { input }} \xrightarrow{\text { output }}
$$

Rules: a) if you input the sane thins twice, the sure output comes ont
b) Only are output canes out.
E.g. stock price at the end of trading of $F B=f_{\text {archaok. }}$
[Inputs: day
Output: price (in dollars)

Functions have a notion of

- domain \rightarrow allowable inputs super important
- range \longrightarrow allowable outputs, has flexibility

For the example, domain is tradoy days since May 18,2012 (IPO).
range: $\longrightarrow \mathbb{R}$ all real numbers
\mathbb{Q} all rational numbers
Q+ all positive rational sambars (ad we con shout)

Your book usually takes range to mean "all possible out pats, and aby those"!

Ill clarify shortly.
This function (FOS) is cot typical for as because it is discrete: 10 partial days!

In calculus, well deal with functions of a 'continue vorimble!.
e.g. Tempenture at $F A I$ as a function of time

$$
\begin{aligned}
& G \text { nice al } \\
& \text { contunuars! }
\end{aligned}
$$

Bat, truth be told, we will model these 'ran world' functions with mithenatical idealizations.
egg.

$$
f(x)=\frac{1}{x} \longleftarrow \text { output }
$$

domain: informally $y: x \neq 0$
formally: $(-\infty, 0) \cup(0, \infty)$

range: \mathbb{R}

$$
\mathbb{R} \backslash\{0\}=(-\infty, 0) \cup(0, \infty)
$$

egg.

$$
\begin{array}{r}
f(x)=\sqrt{x} \quad \text { note: } \sqrt{x} \text { is a number } y \text { with } y^{2}=x . \\
\text { e.g. } \sqrt{4} \quad \begin{array}{r}
y=2 \\
\\
y=-2
\end{array} \quad \begin{array}{r}
2^{2}=4 \\
(-2)^{2}=4
\end{array}
\end{array}
$$

Wecan't have both:
 Dor outputs will be one real a umber.

For us, \sqrt{x} is always $\geqslant 0$.

domain: $[0, \infty)$
range: $[0, \infty)$

$$
\text { e.g: } \quad f(x)=|x|=\left\{\begin{array}{l}
x: x \geqslant 0 \\
-x: x<0
\end{array}\right\} \quad\left\{\begin{array}{l}
x \\
|-7|=7 \\
|\pi|=\pi \quad \text { piecevise-defaned furction }
\end{array}\right.
$$

Graph:

domain: \mathbb{R}

$$
\text { ranse: }[0, \infty)
$$

$$
\text { e.g. } \begin{aligned}
f(x) & =10^{x} \\
f(1) & =10 \\
f(2) & =100 \\
f\left(\frac{1}{2}\right) & =10^{1 / 2}=\sqrt{10} \\
f(1 / 3) & =10^{1 / 3}=\sqrt[3]{10} \\
f(3.14) & =10^{\frac{314}{100}} \longrightarrow^{314}(\sqrt[3]{10})^{3}=10 \\
& =\left(10^{\frac{1}{100}}\right)^{314}
\end{aligned}
$$

$f(\pi)=?$? you'd like to beline its upposicuated by $10^{3.19559}$ and it is. you'se probedy not too worriad dacatit!

domin: \mathbb{R}
rane: $(0,00)$

