The ration of a function 15 a recent innovation in mathematics (early 20th century). 9 Think of as a box For our purposes input & aut put Rules: a) if you input the same these fuice, the same output comes out b) Only one output canos out. E.g. stock price at the end of trading of FB = factore. ask [Inputs: day

Output: price (in dollars)

Fundions have a notion of
domain - allowable inputs super important
• range -> allowable outputs, has flexibility
For the example, domain is trades days since May 18, 2017 (1PD).
Rall real numbers Rall real numbers
Q+ all positive vational ranbons (and we can shrink)
Your book usually takes raise to mean "all possible outputs
I'll clavify shortly.
This function (FB) is not typical for as persuse it is distrete: no portion days!
In calculus, we'll deal with functions of a continues vorinble!
e.g. Temperature at FAI as a fourtion of time
continuous (

But, truth be told, we will model these 'real world' fanctions with motheration idealizations. informally: x = 0 formally: (-00,0) (0,00) 24-04x (03. Graph: R

e.g. $f(x) = \sqrt{x}$ note: Jx is a number y with y=x. y=2 ? 22=4 y=-2 (2)2=4 e.g. J4 We can't have both: one upon ad two parperts. Our outputs will be For us, IX is always >, 0. domoin: [0, 00) ronge: [0,00)

e.g:
$$f(x) = |x| = \begin{cases} x : x \ge 0 \\ -x : x < 0 \end{cases}$$

$$|-7| = 7$$
 $|\pi| = \pi$ pieceuse-defined function

$$f(x) = 10^{x}$$

$$f(1) = 10$$

$$f(\frac{1}{2}) = 10^{112} = \sqrt{10}$$

$$f(\frac{1}{3}) = 10^{113} = \sqrt{3}\sqrt{10}$$

$$f(\frac{1}{3}) = \sqrt{3}\sqrt{10}$$

$$f(\frac{1}{3$$

rune: (0,00)

