Last class: gradient of a function
$f(x,y)$ $\vec{\nabla}f = \langle \partial_x F, \partial_y F \rangle$ $f_y, \frac{\partial F}{\partial y}$
$f(x_{17}) = x^2 - y^2$
Point: If you are traveleng with velocity is
then \$\overline{\vec{f}}\$ for tells you the rate of charge of
f as you truvel.
 Other claims: 1) \$\vec{\vec{\vec{\vec{\vec{\vec{\vec{

Let's demonstrate 1). r'(E) Consider a level set af f. \mathcal{L} f=5 here Consider a path in(E) entirely contained in the level set. So $f(\neq(t)) = 5$ for all t. So $\frac{1}{4}$ f(F(G)) = 0, But $d f(\vec{r}(G)) = \nabla f \cdot \vec{r}'$ Honce $\overrightarrow{\nabla}f$ is perpendicible to every vector tangential to the level set. Related concept: directional derivatives. Suppose we have a temperature field T(x,y) By definition DST is the rate of change at by definition DST is the rate of change at by directional derivative of T along V! T if you true with velocity V. More formally $D_{\overrightarrow{v}}T(p) = \frac{1}{J_{\varepsilon}}T(p+\varepsilon)$ (voj Yo)

If you've been puyous attention,
$D_{\vec{r}}T = \vec{\nabla}T \cdot \vec{v}$ (strictly speakus only when different cable).
Your text only allows it to be a unit vector.
This is silly:
$P = \frac{0.083T}{V}$
It's natural to add what is the vate of chage of pressure
as your move along \vec{v} . But what's a unit vector: 1L = 1 K? It makes no sense.
But you should be aware of The text's convention.
Bat lets 30 back to $T(x, y)$.

Now $D_{\vec{\nabla}} T = \vec{\nabla} T \cdot \vec{\nabla}$		
$= \ \nabla T\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
₹T 7 16_ If you double v you double		
DiT. Great. So let's stick		
with 11FII=1 and ask which direction		
muximizes le vale of chase.		
$\ \vec{\nabla}T\ \cos\theta$		
maximized when $\theta = 1$.		
50 \overline{v} 13 parallel to $\overline{\nabla}T$. (Uphill!)		
Moreover, 11 FTII tells som dT when you		
travel in The increasing direction with "unit" speed.		
· · · · · · · · · · · · · · · · · · ·		

We've been doug all this in Zd, but it works in 3d ad noe.
E.g. $T(x, 7, 2) = 80$ $L + x^2 + 2z^2 + 3z^2$ $x_{14}, C M CM$
hot spot at origin, leaves to O.
$\vec{\nabla}T = \langle \partial_x T, \partial_y T, \partial_z T \rangle$
$\frac{\partial T}{\partial x} = \frac{-80}{(1+x^2+2y^2+3z^2)} \cdot 2x = \frac{-160x}{(1+x^2+y^2+3z^2)^2}$
$\frac{\partial T}{\partial Y} = \frac{-3200 y}{(1 + x^2 + 2y^2 + 3z^2)^2}$ $\frac{\partial T}{\partial Z} = \frac{-480 z}{(1 + x^2 + 2y^2 + 3z^2)^2}$ 3.2.80
$\vec{\nabla}T = \frac{-160}{(1+x^2+2y^2+3z^2)} \langle x, 2y, 3z, 7, 0 C/cm \rangle$
If you are at (1,1,-2) cm, what directions has the steepest increase in temp? Express as a unit vector.

< 1, 2, -67	$ ^{2}+2^{2}+6^{2} = +4+36=4 $
$\bar{u} = \frac{1}{541} < 1, 2, -67$	<t< th=""></t<>
· · · · · · · · · · · · · · · · · · ·	. .
. .	
. .	<td< td=""></td<>

Trankle with boundress, nontinux in hippon on boardoy. If f is ots & ad longer os bounded. and closed it attains a new lon of $f(y,y) = x^2 - 2xy + 2y$ 04×43 05452 $\frac{dt}{\partial x} = 2x - 2y = 7 \quad x = 4$ $\frac{d}{dy} = -2x + 2 = 7 x = 1$ f(1,1) = 1 - 2 + 2 =f(0,2) = 4- $Q_n \chi = O$ is 2γ $O_{n} x = 3$ is q - 6q + 7q = 9 - 4q + 7q = 9 - 4q