Vanno: Let 3Ak 3 be a collection of subsets Conner: of some set A. Then there is a collection EB230 of dissoint subsets of A with · BKEAK YK  $\hat{U}_{k=1}^{R} = \hat{U}_{k=1}^{R}$ for all N, Ø  $B_{i} \cup B_{z} = A_{i}$  $B_{i} \cap B_{z} = \phi$ Br=ArA B3=A3 BEA

$$B_1 = A_1 \qquad B_n = A_n \setminus \bigcup_{k=1}^n A_k$$

For each NE M

$$f(\overset{\circ}{O}A_{k}) \ge f(\overset{\circ}{O}A_{k}) = \overset{\circ}{\sum} f(A_{k})$$

$$\underset{k=1}{\text{Monotially}} f_{\text{finite}} \qquad f_{\text{finite}}$$

$$f_{\text{rom finite additionly}} \qquad f_{\text{dotherly}} \qquad f_{\text{dotherly}} \qquad (disjoint!)$$

Hence 
$$f(\bigcup_{k=1}^{\infty} A_k) \ge \bigoplus_{k=1}^{\infty} f(A_k)$$
.  
But by countable subadditionly  $\bigoplus_{k=1}^{\infty} f(A_k) \ge f(\bigcup_{k=1}^{\infty} A_k)$ .  
Hence  $\bigoplus_{k=1}^{\infty} f(A_k) = f(\bigcup_{k=1}^{\infty} A_k)$ .

Couese: MW

Def: Let  $A \subseteq R$ . A measures cover of Ais a counterfold collection  $\Xi \operatorname{In} \operatorname{S}_{n=1}^{\infty}$  of open interms (possibly empty) such that  $A \subseteq \bigcup_{n=1}^{\infty} \operatorname{In}$ .

Def: Let A G R. The Lebesgue outer newsure mx (A) is inf Z Z L(In): ZInZ is a marsuring cover of AZ



To about extent is mot our ideal length function? nometonicity is pretty clear. AEB every neasures car of B is also a neurous core of A. tradution invernce (HW) scaling covarince (Execise) huder:  $m \neq (Ea, b] = b - a$ 2 (a-e, b+E) 3  $b_{1} = b_{1} + 2\varepsilon$  $m*([a,b]) \leq b-a$ 



Hence 
$$m^{+}(A) \leq \sum_{k=1}^{\infty} l(I_k) = \sum_{k=1}^{\infty} \frac{\varepsilon}{2k} = \varepsilon.$$
  
This is frue for all  $\varepsilon > 0$  so  $m^{+}(A) \leq 0$ .  
Since  $m^{+}(A) \geq 0$  we have  $m^{+}(A) = 0$ .

$$m^{*}(\mathbb{R}) = 0$$

$$m^{*}(\mathbb{A}) = 0 \quad (\mathcal{H}\mathcal{W})$$

Ϊ

Prop: If 
$$a < b$$
 then  
 $m^{*}([a, b]) = b - a$ 

Pf: We have already shown 
$$M^*(C_{5}(5)) \leq b-a$$
.  
So it suffices to show the necesse inequality.  
Let  $\sum J_k \sum_{k=1}^{\infty} be a measure cover of Ca, 5].$   
Since the interval is compact we can extract a finite  
subcover  $\sum J_k \sum_{k=1}^{n} g$  which is also a necessary  
cover of Ca, 5]. Since  $\sum_{k=1}^{n} l(J_k) \leq \sum l(J_k)$   
it suffices to show  $\sum_{k=1}^{n} l(J_k) \geq b-a$ .



Otherwise, WLOG, 
$$b, \in J_2 = (a_2, b_2)$$
.

Continues this procedue we an assure that we have intrades J1, J2,..., Jm with  $J_k = (a_k, b_k)$  and  $b_k \in J_{k+1}$  for  $k = 1, \dots, m-1$ and  $b \in J_{m}$ , 0 besome that for each k,



$$b_k - a_k \ge b_k - b_{k-1}$$
.

 $\sum_{k=1}^{m} l(J_k) = \sum_{k=1}^{m} b_k - a_k \ge (b_1 - a) + (b_2 - b_1) + (b_3 - b_2)$  $+ - (b - b_{n.1})$ 

= b - aHence  $\mathcal{Z} l(\mathcal{I}_{k})$ ; b-a as well, so m\* ([a,b]) 3 b-a as uell.

Next cluss: not is countable subadditive.