Wannip: Let $\{A_k\}_{k=1}^{\infty}$ be a collection of subsets Connai of some set A. Thus there is a collection $\{B_k\}_{k=1}^\infty$ of dissoint subsets at A with $B_k \subseteq A_k$ $\forall k$ $\bigcup_{k=1}^{n} \beta_k = \bigcup_{k=1}^{n} A_k$ $\int_{\mathcal{D}^*}$ all n , $\beta_{2} = A_{2} \backslash A_{1}$ $\beta_0 0 \beta_2 = A$ $\oint \eta h_{2} = \oint$ $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $B_3 = A_3$ $B_1 = A_1$

$$
B_{1} = A_{1} \qquad B_{n} = A_{n} \setminus \bigcup_{k=1}^{n} A_{k}
$$

$$
PF (of pop)
$$
, Suppose F is f under the al
($comhaby$ sub $additive$, (T_{ob} ; $slam +$ is $countable add. 110$)
($onside$ $alisjoint$ $collet an$ $3A_{k}3B_{k-1}$.

For each ME IN

$$
f(\stackrel{\circledcirc}{\underset{\text{free}}{0}}A_{k}) \geq f(\stackrel{\circledcirc}{\underset{\text{free}}{0}}A_{k}) = \sum_{k=1}^{n} f(A_{k})
$$
\n
$$
\uparrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \q
$$

Hence
$$
f(\tilde{U}_{A_{k}}) \ge \sum_{k=1}^{\infty} f(A_{k})
$$
.
\nBut by countable subadd $f(u_{k})$ $\sum_{k=1}^{\infty} f(A_{k}) \ge f(\tilde{U}_{A_{k}})$.
\nHere $\sum_{k=1}^{\infty} f(A_{k}) = f(\tilde{U}_{A_{k}})$.

Det: Lot ASR. A measures cover at A 13 a countrole collection $\{5, 1, 3, 6\}$ of open interests (possibly empty) such that $A \subseteq \bigcup_{n=1}^{\infty} I_n$.

Det: Let A C R. The Lebesgue outer neurone m^{*} (A) 15 $10+\frac{5}{2}$ $\sum_{n}l(T_{n})$: $2T_{n}3$ is a masority care of $A3$ $\begin{picture}(150,10) \put(0,0){\line(1,0){10}} \put(150,0){\line(1,0){10}} \$ \longleftrightarrow \longleftarrow \mathbb{R}

To what extert is not cour ideal length finetion? nomotoricaly is pretty clear. $A \in B$ every neasing caer at B is also a newsing care at A. traslation inverse (HW) scalay covarince (Execte) $h_{u}\circ\text{Ler}: m^{+}(\text{L}_{u},b) = b-a$ $2(a-e, b-2)$ $\left(\begin{array}{cc} 0 & \ln(1+\epsilon) & \ln(1+\epsilon) \\ 0 & 0 & \ln(1+\epsilon) \end{array} \right) = \left(\begin{array}{cc} 0 & \ln(1+\epsilon) & \ln(1+\epsilon) \\ 0 & 0 & \ln(1+\epsilon) \end{array} \right)$ $m*(\Gamma_{q,b}]) \leq b-a$

In fact if $A \subseteq R$ is counterly then $u^*(A) = O$.

 $PF: Let A = \{a_k\}_{k=1}^{\infty}$. Let $\epsilon > 0$. For each k $\left\vert \begin{array}{cccc} \text{if} & \text{if} \\ \text{if} & \text{if} \\ \text{if} & \text{if} \end{array} \right\vert = \frac{\epsilon}{2k}.$ Then $\Sigma\Sigma_k\Sigma$ is a neasonly cover for A.

Hence
$$
um^{\#}(A) \le \sum_{k=1}^{\infty} l(\mathbb{I}_{k}) = \sum_{k=1}^{\infty} \frac{\epsilon}{k!} = \epsilon
$$
.
\nThus, l_{2} and $l_{2} \ge \sum_{k=1}^{\infty} l(\mathbb{I}_{k}) = 0$.
\nSince $mt(A) \ge 0$ we have $mt(A) = 0$.

$$
m^*(\mathbb{Q}) = 0
$$

$$
m^*(\mathbb{A}) = 0
$$
 (410)

$$
\bigcap_{m \neq} p
$$
 $\exists f \quad a < b$ then
\n $m \neq (\lfloor a, b \rfloor) = b-a$,

Pf: We have already shown
$$
M*(C_6,5) \leq b-a
$$
.
\nSo if suffices to show the reverse inequality.
\nLet $\{55,3\}_{k=1}$ be a mesons of cone at E4,53.
\nSince the integral is compact, we can extract a finite
\nsubconv of $\{55,3\}_{k=1}$, which is also a new
\ncover of L4,53. State $\sum_{k=1}^{n} l(5_k) \leq \sum_{k=1}^{\infty} l(5_k)$
\nif selfsues to show $\sum_{k=1}^{n} l(5_k) \geq b-a$.

Wilhant loss of generally,
$$
a \in J_{1} = (a_{1}, b_{1})
$$
.
\n $\mathbb{F}^{\mathbb{L}} \downarrow b \in J_{1}$ clearly $\mathbb{L}(I_{4}, J_{3}) \leq \mathbb{L}(J_{1}) \leq \sum_{k=1}^{n} \ell(T_{k})$.

Otherwise,
$$
WLOG
$$
, $b_{1} \in J_{2} = (a_{2}, b_{2}).$

Contruis Mis procedue une cu assure that we have in tambs J_1, J_2, \cdots, J_m

with $J_k = (a_k, b_k)$ and $b_k \in J_{k+1}$ for $k = 1, ..., m-1$ and $b \in J_{m}$. Obsune that for each k

$$
l_{k}-a_{k} \geqslant b_{k}-b_{k-1}.
$$

 $\sum_{k=1}^{m} l(\mathbb{J}_{k}) = \sum_{k=1}^{m} b_{k} - a_{k} > (b_{1} - a) + (b_{2} - b_{1}) + (b_{3} - b_{2})$ $+ - - (b - b_{n,j})$

 $=$ $b - a$ Hence $\sum_{k=1}^{\infty} l(\mathbf{I}_k)$ $\frac{1}{2}$ b-a as well, so $m*(\Sigma a,b)$ $\geq b-a$ as uell.

Next cluss: m^* is countable subadditure.