Spaces of bounded functions

$$f_{\Lambda} \rightarrow f$$
 uniformly $f_{\Lambda} = X \rightarrow R$
 $\forall \in 70 \exists N \text{ s.d. } n \Rightarrow N \Rightarrow |f_{\Lambda}(\kappa) - f(\kappa)| \leq \varepsilon \forall x \in X$

More serently if & is a normal vector space B(4,4) = Zf:X > Y: JM with ||f(x)||y SM HXEX Z

Agun
$$B(X,Y)$$
 is a vector space and
 $\|ff\|_{\infty} = \sup_{x \in X} \|ff(x)\|_{Y}$ is a norm on $B(X,Y)$.

Consequently
$$\|f_n(x)\|_{Y} \leq M$$
 for all n and all $k \in X$.
But then if $x \in X$, $\|f(x)\|_{Y} = \lim_{n \to \infty} \|f_n(x)\| \leq M$ as well.
So $f \in B(XY)$.
To see that $f_n \Rightarrow f$ in $B(XY)$ consuder $E > O$.
Pick N such that if $u, m \geq N$. $\|f_n(x) - f_m(x)\|_{Y} \leq E$
for all $x \in X$. Fix $n \geq N$. Then for each $x \in X$
 $\|f_n(x) - f(x)\|_{Y} = \lim_{m \to \infty} \|f_n(x) - f_m(x)\|_{Y}$
 $\leq E$
Since $\|f_n(x) - f_m(x)\|_{Y} \leq E$ for m large enough.
That is, if $n \geq N$ then $\|f_n - f\|_{W} \leq E$.
So $S_n \Rightarrow f$.

We'd like a method & determining if servers of Sections
converse anitomly.
This Weiershards M-test
Suppose (fin) is a sequence of factions from a set X to R.
Suppose noncover there exists constants
$$M_n \ge 0$$
 such that
for all $x \in X$, $|f_n(X)| \le M_n$.
If $\sum_{n=1}^{\infty} M_n$ converses then $\sum_{n=1}^{\infty} f_n$ converses Unitomly
(i.e. in $B(X)$) to a limit f.
Pf: Let $s_n = \sum_{k=1}^{n} f_k$. Then if $n > M$ and if $x \in X$ then

$$\begin{vmatrix} S_n(k) - S_m(A) \end{vmatrix} = \begin{vmatrix} \sum_{k=m+1}^{n} f_k(k) \\ k=m+1 \end{vmatrix}$$

$$\leq \sum_{k=m+1}^{n} |f_k(k)|$$

$$\leq \sum_{k=m+1}^{n} M_k \cdot K_{k=m+1}$$

Hence, since the period sums of the serves $\sum_{k=1}^{n} M_k$ are
are (addy, so is $(S_n(k))$ for each $k \in X_{-}$
Hence $S_n(k) \rightarrow f(k)$ for some $f(k) \in \mathbb{R}$.
Hence $S_n(k) \rightarrow f(k)$ for some $f(k) \in \mathbb{R}$.
To see that $S_n \rightarrow f$ uniformly let $\in YO$.
Prok N so that if insum N then
 $|S_n(k) - S_m(k)| \leq E$ for all $k \in X_{-}$

Taking a limit in my

$$\left| S_{n}(x) - f(x) \right| = \left| mn \right| S_{n}(x) - S_{m}(x) \right| \le \varepsilon$$

$$if n > N_{\circ} \quad S_{\circ} \quad S_{\circ} \quad = f \quad on \quad Somly.$$

This (Werestriss M-test forcy) Suppose (Fn) is a sequence in B(X,Y) where Y is complete. If ZIIfalles conveges then Zefr conveyes oniformly to a limit fe B(59),

In practice: you find
$$M_n$$
 with $\|\int_n \|_{\infty} \leq M_n$
and such that $\sum_{n=1}^{\infty} M_n$ converses. (=> $\sum_{n=1}^{\infty} \|\int_n \|_{\infty}$
converses as well)
Pf: Since Y is complete so is $B(x_1)$.
Hence absolutely summable serves in $B(x_2)$ converse,
We have assund $\sum_{n=1}^{\infty} \|\int_n \|_{\infty}$ converses, which is
precisely that $\sum_{n=1}^{\infty} f_n$ is absolutely conversent.

Application: power series.

 $(05(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^4}{6!} - \frac{x^4}{6!}$

-s(n(x))

Given	$\sum_{\substack{n=0\\n=0}}^{68} a_n x^n$	does	:+	Carveze	at	Sone	χŚ	‡	0.
-------	---	------	----	---------	----	------	----	---	----

If it does call the resulting function f(x), If $f'(x) = \sum_{n=1}^{\infty} n a_n \times n^{-1} \int_{0}^{1}$

 $\sum_{n=0}^{60} a_n \times \frac{n}{2}$ Suppose that for sume x0 =0 that

Converseso

Claims

リニン

1)
$$\sum_{n=0}^{\infty} a_n x^n$$
 cances uniformly on $[-R, R]$
2) $\sum_{n=1}^{\infty} n a_n x^{n-1}$ converses uniformly on $[-R, R]$
3) $\sum_{n=1}^{\infty} n (n-1) a_n x^{n-2}$ converses uniformly on $[-R, R]$

ete, $a_0 = f(0)$ $a_1 = f'(0)$ f(x) $2a_2 = f''(0)$ $k \cdot a^{k} = f^{(k)}(0)$ $g(x) = \begin{cases} D & x \leq 0 \\ e^{-1/x} & x > 0 \end{cases}$ $q^{(k)}(0) = 0$

9 does not hue a po ver series representation.

 a_{0} $a_{0} + a_{1} \times$ $a_{0} + a_{1} \times + a_{2} \times^{2}$