Spaces & bounded Sunctions

X set,
$$
X \neq \emptyset
$$

\n $B(X) = \{f: X \rightarrow \mathbb{R} : \exists M \ge 0 \Rightarrow f. |f(x)| \le M \text{ } x \in X\}$
\n $B(X) \Leftrightarrow a \text{ vector space.}$
\nNorm: $\|\varphi\|_{\infty} = \sup_{x \in X} |f(x)|$ Exercise: This is a norm.
\nIf $X = \mathbb{N}$ that is \mathbb{L}_{∞} $C \subseteq \circ, \exists \in B \text{ for } J$
\n $\Leftrightarrow closed subspace$

Convergence in
$$
B(x)
$$
 is
preizley uniform convergence

$$
f_{n} \rightarrow f
$$
 uniformly
\n $f_{n} \rightarrow f$ uniformly
\n $f_{n}:\chi \rightarrow \mathbb{R}$
\n $f_{n} \rightarrow f$ uniformly
\n $f_{n} \rightarrow \mathbb{R}$
\n $f_{n} \rightarrow f$
\n $f_{n} \rightarrow \mathbb{R}$
\n $f_{n} \rightarrow \mathbb{R}$

$$
\exists V_{5,1} \land \Rightarrow N \Rightarrow \forall \forall \forall \forall \exists y \text{ } || \theta_{0} \leq \epsilon
$$
\n
$$
\exists \forall \forall \forall y \text{ } | \theta_{0} \leq \epsilon
$$
\n
$$
\text{sup}_{\alpha \in X} |f_{\alpha}(x) - f(x)|
$$

$$
Z
$$

It serves ending all $0.5 \leq l_{2}$

More serently of Y is a romed vector space $B(44) = \frac{5}{3}f:x\rightarrow Y:JM with IfW||_{YSM}$ $Hx\in X\frac{3}{3}$

Again
$$
BU, Y
$$
 is a vector space and

\n
$$
||f||_{\infty} = \sup_{x \in X} ||f(x)||_{Y}
$$
\nis a 10nm on BU, Y).

Prop's IL Y is complete. \nIn particular,
$$
BCD
$$
 is complete.

\nPS: Suppose $(f_n) \approx Cauchy$ in BCM ?)

\nSo So a $1 \le 20$ there exists N such that, $2n, n \ge N$.

\nHow, $|| f_n(x) - f_m(x) ||_q \in B$ on all $x \in X$.

\nHow, $|| f_n(x) - f_m(x) ||_q \in B$ on all $x \in X$.

\nHow, $0 \le n \le N$, $(f_n(x))$ is Cauchy by \nSo for each $x \in Y$, $f_n(x) \Rightarrow f(x)$ for some $f(x) \in Y$.

\nSince Cauchy sequences are bounded, there exists M such that $||f_n||_{Q} \in M$ for all n .

Consequently
$$
||f_{n}(y)||_{Y} \leq M
$$
 for all n and all $x \in X$.

\nBut $||f_{n}(y)||_{Y} \leq M$ for all $x \in X$.

\nBut $||f_{n}(x)||_{X} \leq \log |f_{n}(x)||_{X}$ as well.

\nSo $f \in B(X|Y)$.

\nUse $||f_{n}(x) - f_{n}(y)||_{Y} \leq E$

\nFor all $x \in X$. Fix $n \geq N$. Then for each $x \in X$.

\n $||f_{n}(x) - f(x)||_{Y} = \lim_{m \to \infty} ||f_{n}(x) - f_{m}(y)||_{Y}$

\n $\leq E$

\nSince $||f_{n}(x) - f(x)||_{Y} = \lim_{m \to \infty} ||f_{n}(x) - f_{m}(y)||_{Y}$

\n $\leq E$

\nSince $||f_{n}(x) - f_{n}(y)||_{Y} \leq E$ for m large enough,

\nThus $f_{n}(x) = \lim_{m \to \infty} ||f_{n}(x) - f_{m}(y)||_{Y}$

\nThus $f(x) = \lim_{m \to \infty} ||f_{n}(x) - f_{m}(y)||_{Y}$

\nThus $f(x) = \lim_{m \to \infty} ||f_{n}(x) - f_{m}(y)||_{Y}$

\nThus $f(x) = \lim_{m \to \infty} ||f_{n}(x) - f_{m}(y)||_{Y}$

\nThus $f(x) = \lim_{m \to \infty} ||f_{n}(x) - f_{m}(y)||_{Y}$

\nThus $f(x) = \lim_{m \to \infty} ||f_{n}(x) - f_{m}(y)||_{Y}$

\nThus $f(x) = \lim_{m \to \infty} ||f_{n}(x) - f_{m}(y)||_{Y}$

\nThus $f(x) = \lim_{m \to \infty} ||f_{n}(x) - f_{m}(y)||_{Y}$

\nThus $f(x) = \lim_{m \to \infty} ||f_{n}(x) - f_{m}(y)||_{Y}$

We'd like ^a method for determining if series of functions conese uniformly, Thun Weiestrass M-test Suppose (fu) is a sequence of functions from ^a set ^X to R . Suppose moreover there exists constants Mm?0 such that for all x=X, Ife(x)/ Mn . Is ^M coneses then it converses tiformly Siie, in B(XL) to ^a limit fo Pf: Let an = Efrc . Then if is ^m and if xex them

$$
|S_{n}(k)-S_{m}(A)| = |\sum_{k=m+1}^{n} f_{k}(k)|
$$
\n
$$
\leq \sum_{k=m+1}^{n} |f_{k}(k)|
$$
\n
$$
\leq \sum_{k=m+1}^{n} M_{k}
$$
\nHence, since the partial sums at the series $\sum_{k=1}^{n} M_{k}$ are
\nare Cauchy, so $(5, 0)$ for each $x \in X$.
\nHence, $S_{n}(x) \rightarrow f(x)$ for some $f(x) \in R$.
\nTo see that $S_{n} \rightarrow f(x)$ for some $f(x) \in R$.
\n
$$
|S_{n}(x)-S_{m}(x)| \leq \epsilon
$$
 for all $x \in X$,

Taleng a lunt (m m)

$$
|S_{n}(k) - f(k)| = |m_{n \to \infty} |S_{n}(k) - S_{n}(k)| \leq \epsilon
$$

$$
|S_{n}(k) - f(k)| = |m_{n \to \infty} |S_{n}(k) - S_{n}(k)| \leq \epsilon
$$

Thm (Weierstass M-test,
$$
4a
$$
)

\nSuppose (fn) is a sequence in $B(x,r)$ where

\nY is complete. If $\sum_{n=1}^{\infty} ||f_n||_{q_0}$ converges

\nThen $\sum_{n=1}^{\infty} f_n$ converges on f form 4π to a limit $f \in B(x,r)$.

ι

In practice:
$$
y_{ew}
$$
 fund $M_n = w_i M_n$ $||S_n||_{\omega} \le M_n$

\nand such that $\sum_{n=1}^{\infty} M_n$ converges. $(\Rightarrow \sum_{n=1}^{\infty} ||S_n||_{\omega}$

\nOnce Y_{13} completely is a table of $\sqrt{3}$.)

\nHere absolutely summable series in $BS(X)$ converge, W_{13}

\nWe have assumed $\sum_{n=1}^{\infty} ||S_n||_{\omega}$ converges, which is precisely $W_1 = \sum_{n=1}^{\infty} f_n$ is absolutely convergent.

Application: plower serves.

 $sin(x)$

 Iff ; H does call the resulting twell function $f(x)$, $I_{s} f'(\tau) = \sum_{n=0}^{\infty} h a_{n} x^{n-1} \int_{0}^{1} f(x) \, dx$

 $\Sigma_{n=0}^{a_{1}\times a_{2}}$ Suppose that for same $x_0 \neq 0$ that

Converses.

 $Cl₀$ (m s

 e _{e} $a_{0} = f(0)$
 $a_{1} = f'(0)$ $f(x)$ $2a_2 = f''(0)$ $k \cdot q_{2} = f^{(k)}(0)$ $g(y)=\begin{cases} 0 & x \le 0 \\ e^{-1/y} & x > 0 \end{cases}$ $g^{(k)}(0) = 0$

g does not huve a po ver series representation.

 a_{o} a_{0} + a_{i} x $u_{0} + a_{1}x + a_{2}x^{2}$