Unifor consume plays needy will containeds and integration.
Prop: Suppose
$$f_n: X \rightarrow Y$$
 are all containeds at some xoCX
and convese uniformly to a limit f .
Then f is contained at xo.
"Uniform limit of cits forctions is cits."
Pf: Let $\varepsilon > 0$. There exists N such that if $n \ge N$
then $d_Y(f(x), f_n(x)) < \varepsilon$ for all $x \in X$.
Since f_N is continued at x_0 there exists $\delta > 0$
such that if $d_X(x_0, x) < \delta$, $d_Y(f_N(x_0), f_N(x)) < \varepsilon$.
Now, if $d_X(x_0, x) < \delta$

$$d_{\gamma}(f(x_{0}), f(x_{0})) \leq d_{\gamma}(f(x_{0}), f_{\nu}(x_{0})) + d_{\gamma}(f_{\nu}(x_{0}), f_{\nu}(x_{0})) + d_{\gamma}(f_{\nu}(x_{0}), f(x_{0})) + d_{\gamma}(f_{\nu}(x_{0}), f(x_{0}))$$

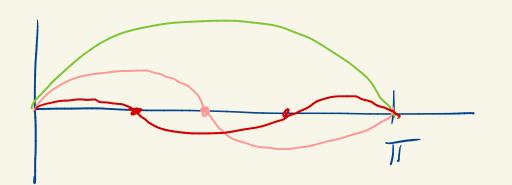
Pf: Since
$$f_n \rightarrow f$$
 uniformly, f is continuous and hence
Riemann integrable.
To show $\lim_{n \to \infty} \int_{a}^{b} f_n = \int_{a}^{b} f$, let $E > 0$.

Pick N so that if NZN, If (x) - f. (x) < E for all XELA, 6]. Man, of NON $\int_{a}^{b} f_{n} - \int_{a}^{b} f = \int_{a}^{b} (f_{n} - f)$ $\leq \int_{a}^{b} |f_{n}-f|$ S JE $f_{n} = f_{n}$ = (b-a)E. $\int_{a}^{b} f_{n} \Rightarrow \int_{a}^{b} f_{n}$ Vence

Differentiation:

 $f_n(x) = \int x^n$ fr >> O uniformly $f_{1}(1) = |$. Su > O' even pratuise

[9,T] $f(x) = \frac{1}{n} \sin(nx)$ on



h-> 0 un.Somly

 $f_{n}'(\kappa) = \cos(n\kappa)$

Pf: Observe that for each n $f_n(x) = f_n(x_0) + \int_{x_0}^{\infty} f'_n(s) ds.$ This follows from the FTC using the fact that each f'n is continuous. Since fi's guitomy and since Si (Ko) > c $f_n(x) \rightarrow c + \int_{-\infty}^{\infty} g(s) ds.$ Let $f(x) = c + \int_{x_0}^{x} g(s) ds$. We have just shawn that find for pointwise. Because o is a uniform

limit of continuous functions it is continuous and the FTC then implies f(x) = g(x).Evoletly f(x)=c and it remains to show finsf Uniformity. Observe that for my X E [a,b] $\left| f_n(x) - f(x) \right| = \left| f_n(a) + \int_a^{\infty} f_n'(s) ds - \left(f(a) + \int_a^{\infty} f'(s) ds \right) \right|$ $\leq |f_n(a) - f(a)| - |\int_a^x (f'_n - f')(s) ds|.$

Let ESO. Pack NSO that if nZN then |f, (a)-f(a) | < E and such that |f'(x)-g(x) < E for all x e [a,b]. $\left|\int_{a}^{\infty} \left(f_{o}'-s'\right)\right| \leq \int_{a}^{\sqrt{2}} \left|f_{o}'-f\right|$ Hence, if n Z N 5 SE $\left| f_n(k) - f(k) \right| \leq \mathcal{E} + \int_a^{\infty} \mathcal{E}$ $= (\chi - a) \cdot E$ \leq (b-a). E $= \varepsilon + (\chi - a)\varepsilon$ $\leq (|+(b-a)) \mathcal{E}_{f}$ for all x & Ca, b].