$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

 $\frac{d}{dx}e^{x} = \frac{d}{dx}\sum_{n=0}^{\infty}\frac{x^{n}}{x!}$ $\frac{1}{2}\sum_{n=0}^{\infty}\frac{d}{dx}\frac{x^{y}}{n!}$ = $\sum_{n=0}^{\infty} \frac{n x^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

 $\left(\int_{0}^{1}e^{x}dx\right)=\int_{0}^{1}\sum_{n=0}^{\infty}\frac{x^{n}}{n!}dx$ $= \sum_{n=0}^{\infty} \int_{0}^{1} \frac{x^{n}}{n!} dx$ $=$ $\sum_{n=0}^{\infty}$ $\times \frac{x^{n+1}}{(n+1)!}$ $= \sum_{n=0}^{\infty} \frac{1}{(n+1)!}$ $=$ $\frac{1}{2}$ $\frac{1}{n!}$ $= 2 \frac{1}{10} - 1 = 0$

Under such conditions generally is

\n
$$
\begin{aligned}\n\partial_x f(x) &= \lim_{N \to \infty} \partial_x f_N(x) \\
\delta_x f(x) &= \lim_{N \to \infty} \int_0^1 f_N(x) dx\n\end{aligned}
$$

Def:
$$
\lfloor a \rfloor
$$
 $\lfloor a \rfloor$ $\lfloor a \rfloor$

\nthe square converges positive to $f : A \rightarrow Y$

\nif $a_0 = a \rfloor$ $a \in A$, $\int_a (a) \rightarrow \int (a)$.

\n(form New6:

\n1) The points $\lfloor na + \lfloor a \rfloor$ $\lfloor an + \lfloor a \rfloor$

\ncontinuous functions, $A = [0, 1]$ $Y = \lceil R$,

\n $\int_a (y) = x^n$ $\lim_{n \rightarrow \infty} \int_a (y) = \begin{cases} 0 & x \neq 1 \\ x & = 1 \end{cases}$

2) The postwise limit of Riemann integrable functions
need not be Riemann integrable. In the event that the
limit is Riemann integrable, if need not be

$$
\lim_{n\to\infty}\int_{a}^{b}f_{n}(y)dx=\int_{a}^{b}f(x)dx
$$
 $(\hat{f}_{n}+\hat{f}_{n})$
product \hat{f}_{n}

и

 $f_n \rightarrow O$ $f_{n}(0) = 0$ for all n. $x\in$ $[0,1]$ \exists N $\frac{1}{N}$ \angle K . $\begin{array}{cccc}\n\mathbb{H} & & \mathbb{1} & \$ $\int_{a}^{1} f_{n}(x) dx = \frac{1}{2} \int_{a}^{1} f_{\sigma} \cdot d\|_{q}$ $\begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{matrix}$ $\int_{0}^{1} f(x) dx = O$ $f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{Q} \end{cases}$ $0\leq x\leq$ not Rrouning

$$
(n_{n})
$$
\n
$$
\int_{n}^{n}(x) dx = \begin{cases} 1 & x \in \{n, n_{n}, n_{n}\} \\ 0 & \text{otherwise} \end{cases}
$$
\n
$$
(\frac{n}{n})
$$
\n
$$
\int_{0}^{n} x \cdot dx = \frac{1}{2} n_{n} x \cdot dx
$$
\n
$$
\int_{0}^{n} \int_{0}^{n} x \cdot dx = \frac{1}{2} n_{n} x \cdot dx
$$
\n
$$
\int_{0}^{n} \int_{0}^{n} x \cdot dx = \frac{1}{2} n_{n} x \cdot dx + \frac{1}{2} n_{n} x \cdot dx + \frac{1}{2} n_{n} x \cdot dx
$$
\n
$$
= \frac{1}{2} n_{n} x \cdot dx + \frac{1}{2} n_{n} x \cdot dx + \frac{1}{2} n_{n} x \cdot dx
$$
\n
$$
= \frac{1}{2} n_{n} x \cdot dx + \frac{1}{2} n_{n} x \cdot dx + \frac{1}{2} n_{n} x \cdot dx
$$
\n
$$
= \frac{1}{2} n_{n} x \cdot dx + \frac{1}{2} n_{n} x \cdot dx + \frac{1}{2} n_{n} x \cdot dx
$$
\n
$$
= \frac{1}{2} n_{n} x \cdot dx + \
$$

Another solution of convergence of functions:

\n[Def: Suppose (f_A) is a sequence of functions from a set A to a metric space Y. We say the sequence converges uniformly to a list
$$
f: A \Rightarrow Y
$$
, f for every f be zero, there exists N such that for all a set M and a set λ .

\n[f_A(a), f(a)] < E,

$$
g_{n}(x) = \frac{1}{n}x^{n}
$$
 $g_{n} \rightarrow 0$ positive
\n $g_{n} \rightarrow 0$ uniformly. $W \rightarrow L \in$
\n f
\n $g_{n}(1) = 0$
\n $O'(1) = 0$
\n $Q_{n}(1) = 0$
\n $Q_{n}(1) = 0$