C_{\circ} : If $f: X \rightarrow Y$ is unif. Its then it takes Cauly sequences to Caely sequences. $Pf:$ Suppose (x_1) is Cauchy in X. T_{tan} $\{x_{i}: i \in \{N\} \}$ is totally banded as is $\begin{array}{c} 2 \neq (x_0) \text{ in } N \end{array}$ $Hece$ $(f(f_n))$ is Caechy,

Prop: Suppose X is compact and f:X> Y is obs.

\nThe
$$
\frac{1}{2}
$$
 is uniformly continuous.

\n94: Suppose to the contrary that f is not uniformly continuous.

\nThen the exists C>0 such that for each $n \in \mathbb{N}$ we can find a and b, such that $d_X(a_n, b_n) < \frac{1}{n}$ but $d_Y(f(a_1), f(b_n)) \geq \varepsilon$.

\nSince X is compact, we can extract a consequence.

\nSo, we have $a \in X$,

\nWe then that $b_{a_k} \rightarrow a$ as well.

\nObserve $d_X(a_1, b_1) \leq d_X(a_2, a_1) + d_X(a_k, b_k)$.

\nSo, we have $d_X(a_1, b_1) \leq d_X(a_2, a_1) + d_X(a_k, b_k)$.

\nSo, we have $d_X(a_1, b_1) \leq d_X(a_2, a_1) + d_X(a_k, b_k)$.

\nSo, we have $d_X(a_1, b_1) \leq d_X(a_2, a_1) + d_X(a_k, b_k)$.

Since
$$
d_{\chi}(a_{,a_{n_{k}}})
$$
 so all such $\frac{1}{n_{k}} \rightarrow 0$ we
find $b_{a_{1,k}} \rightarrow a$. By continuity, $f(a_{n_{k}}) \rightarrow f(a)$
and $f(b_{n_{k}}) \rightarrow f(a)$. But this contains the
fact that $d_{\varphi}(f(a_{n_{k}}), f(b_{n_{k}})) \geq e$ for all k.

$$
T_{\text{Lsk}}
$$
: $A \subseteq X$

$$
f:A\rightarrow Y, continuous
$$

Can we construct $f:\overline{A}\rightarrow Y$
Such that $f|_{A}=\hat{f}$.

 $f(x)=\frac{1}{x}$ or $[0,1]$

 \times

 $f(x) = 54(\frac{1}{x})$ on $[0, 1]$

\nThus, Suppose
$$
A \in X
$$
, $f: A \Rightarrow Y$ is uniformly continuous, Y is complex and $\overline{A} = X$. Thus, the exists a unique continuous $\overline{S}: X \Rightarrow Y$ such that $\overline{S} \Big|_{X} = f$.\n

\n\nHowever, $\overline{S} \cong X$ is notomorphic continuous.\n

\n\n $\begin{array}{ll}\n\text{P.} & \text{Let } X \in X, \text{ Let } (a_1) \text{ be a sequence of } A \text{ converges by } X \\
\text{Since } (a_1) \text{ is Cauchy, for some } X \in Y_1, \text{ the } A \text{ is a sequence of } A \text{ converges by } X\n\end{array}$ \n

\n\n $\begin{array}{ll}\n\text{for some } X \in Y_1, \text{ the } A \text{ is a sequence of } A \text{ converges by } X \\
\text{In } X \text{ is a sequence of } X \text{ is a sequence of } X_1, \text{ and } X_2, \text{ and } X_3, \text{ and } X_4, \text{ and } X_5, \text{ and } X_6, \text{ and } X_7, \text{ and } X_8, \text{ and } X_9\n\end{array}$ \n

\n\n $\begin{array}{ll}\n\text{For some } X \in Y_1, \text{ the } A \text{ is a sequence of } X_1, \text{ and } X_7, \text{ and } X_7, \text{ and } X_8, \text{ and } X_9, \text{ and } X_9, \text{ and } X_9, \text{ and } X_9\n\end{array}$ \n

\n\n $\begin{array}{ll}\n\text{The subflued sequence also converges to } X, \text{ and } X_9\n\end{array}$ \n

The argument above (
$$
f(a_1) f(b_1) f(a_2) f(b_2) ...
$$
)
\nConuses the some 9 . But $(f(a_1))$ is a subspace
\nand conves by so $9 = 9$. But $f(b_1) \rightarrow y$
\nus well
\nNote that f x eA we can use a constant sequence to find
\n $\overline{f}(x) = f(x), \overline{f}$ is an extension of f .
\nTo see $2e^{-x}$ is uniformly continuous. let $e > 0$.
\nSince f is uniformly continuous, we can find 870
\nso that if a $6eA$ and $d(a_1b) < 6$ then $d(4a_1)(a_2) < \frac{e}{2}$.
\nNow converge x, w $e \times$ with $d(x, w) < 9/3$.
\nLet $(a_1) = a_1 + b_1$ and $(a_2) = 9/3$.
\nLet $(a_1) = a_1 + b_1$ and $(a_2) = 9/3$.
\nLet $(a_2) = a_1 + b_1$ and $(a_2) = 9/3$.
\nLet $(a_3) = a_1 + b_1$ and $(a_2) = 9/3$.
\nLet $(a_1) = a_1 + b_1$ and $(a_2) = 9/3$.
\n $a_1 + b_1 = 9/3$ and $a_2 + b_1 = 9/3$.
\n $a_2 + b_2 = 9/3$ and $a_1 + b_1 = 9/3$.
\n $a_2 + b_2 = 9/3$ and $a_1 + b_1 = 9/3$.
\n $a_2 + b_1 = 9/3$ and $a_2 + b_1 = 9/3$.
\n $a_3 + b_1 = 9/3$ and $a_1 + b_1 = 9/3$.
\n $a_2 + b_1 = 9/3$ and $a_2 + b_1 = 9/3$.
\n $a_3 + b_1 = 9/3$ and $a_1 = 9/$

$$
d(a_{n},x) < \frac{5}{3} and d(b_{n},w) < \frac{5}{3}. Then
$$

\n
$$
d(a_{n},b_{n}) \leq d(a_{n},x) + d(x_{n}) + d(w,b_{n})
$$

\n
$$
d(a_{n},b_{n}) \leq d(a_{n},x) + d(x_{n}) + d(w,b_{n})
$$

\n
$$
\leq \frac{5}{3} + \frac{5}{3} + \frac{5}{3}.
$$

So,
$$
A \rightarrow ZN
$$
, $d(f(a_1), f(b_1)) < \frac{C}{2}$.
\nNow $f(a_1) \rightarrow \overline{f}(x)$ and $f(b_1) \rightarrow \overline{f}(w)$.
\nBut $d(\overline{f}(x), \overline{f}(w)) = \lim_{n \to \infty} d(f(a_1), f(b_1)) \le \frac{C}{2} < \epsilon$.
\nIn particular \overline{f} is continuous. The uniqueness at the extension follows from a HW except

Motrics are equivalent it they determe the same convergent sequences. $x_1 \longrightarrow x_1 \iff x_1 \longrightarrow x_2$ (f) If $x \rightarrow x$ the $x \rightarrow x$ (x,d_z)
 $(x_2$ (X, d) X $id_{12}: X_{1} \rightarrow X_{2}$ $id_{12}(x) = x$ id₁₂ is continuers $(\star \star)$

$$
d_{1} \quad a_{2} \quad d_{2} \quad a_{3} \quad e_{quarkort} + \frac{19}{19}
$$
\n
$$
d_{12} \quad a_{3} \quad d_{21} = (id_{12})^{-1} \quad \text{are} \quad \text{continuous.}
$$
\n
$$
\int_{a}^{a} \int_{a}^{b} \left(\frac{x}{\sqrt{1-\frac{1}{a^{2}}}} \right)^{1-\frac{1}{a^{2}}} e^{-\frac{x}{\sqrt{1-\frac{1}{a^{2}}}}}
$$
\n
$$
f_{2} \quad \text{where} \quad i d_{12} : x \rightarrow x.
$$
\n
$$
f_{2} \quad \text{where} \quad i d_{12} : x \rightarrow x.
$$
\n
$$
i d_{12} : x \rightarrow x.
$$
\n
$$
i d_{12} : x \rightarrow \text{linear.}
$$
\n
$$
i d_{12} (x_{1} + x_{2}) = i d_{12}(x_{1}) + id_{12}(x_{2})
$$
\n
$$
i d_{12} (x_{3}) = id_{12}(x).
$$

$$
id_{1z}(x_{1}+y_{2}) = x_{1}+y_{2} = id_{1z}(x_{1}) + id_{1z}(y_{2})
$$
\n
$$
id_{1z}(c x) = cx = c \cdot id_{1z}(x)
$$
\n
$$
Area = \frac{1}{z}
$$

 \mathcal{L}