Cor! If f: X-74 is write des then it takes Carry sequences to Carely sequences. Pf: Suppose (xn) is Cauly in X. Then ExinciN3 is totally laenched as is 3 f (m): NE/N3, Hence (flxn) is Cuechy.

Prop: Suppose X is conjust and fix > Y is ots.
Then f is uniformly continuous.
Pf: Suppose to the contrary that f is not uniformly continuous.
Then there exists E>O such that for each new we can tank
an and be such that
$$d_X(a_1,b_n) < \frac{1}{N}$$
 but $d_Y(f(a_2), f(b_1)) \ge E$.
Since X is compact we can extrait a conversent
Subsequence (a_{N_k}) with $a_{N_k} \ge a$
for sine $a \in X$,
We claum that $b_{N_k} \ge a$ as well
Olosenve $d_X(a_1,b_n) \le d_X(a_1,a_{N_k}) + d_X(a_{N_k},b_{N_k})$
 $\le d_X(a_1a_{N_k}) + \frac{1}{n_k}$.

Since
$$d_{\chi}(a_{,a_{n_{k}}}) > 0$$
 and since $\frac{1}{n_{k}} > 0$ we
find $b_{n_{k}} > a$. By continuity $f(o_{n_{k}}) = f(a)$
and $f(b_{n_{k}}) = f(a)$. But this contradicts the
fact that $d_{\gamma}(f(o_{n_{k}}), f(b_{n_{k}})) \ge \varepsilon$ for all k .

$$f: A \rightarrow Y$$
, continues
Conve construct $F: \overline{A} \rightarrow Y$
Such that $\overline{F}|_{A} = f$,

 $f(x) = \frac{1}{x}$ on (0, 1]

X

 $f(x) = sin(\frac{1}{x})$ on (0, 1]

the arguent above
$$(f(a_i), f(b_i), f(a_i), f(b_i), \dots)$$

converses to some f . But $(f(a_i))$ is a subsequence
and converses to y so $f = y$. But the $f(b_i) = y$
us well.
Note that if $x \in A$ we can use a constant sequence to find
 $\overline{f}(x) = \overline{f(x)}_g$ \overline{f} is an extension of \overline{f} .
To see that \overline{f} is unboundy contained let $\varepsilon > 0$.
Since f is anthomy contained use on find $s \neq 0$.
Since f is anthomy contained bet $\varepsilon > 0$.
Since f is anthomy contained bet $\varepsilon > 0$.
Since f is anthomy contained bet $\varepsilon > 0$.
Let (a_i) and (b_i) be sequences in A conversing to
 x and w vespectively. Pick N so that if $a \neq N$

$$\begin{split} d(a_n, x) < \frac{2}{3} \quad and \quad d(b_n, w) < \frac{2}{3}. \quad Then \\ f \cdot n > N \\ d(a_n, b_n) < d(a_n, x) + d(x, w) + d(w, b_n) \\ < \frac{2}{3} + \frac{2}{3} + \frac{2}{3}. \\ = \delta. \end{split}$$

So,
$$f \to \pi \pi N$$
, $d(f(a_n), f(b_n)) < \frac{\pi}{2}$.
Now $f(a_n) \rightarrow \overline{f}(x)$ and $f(b_n) \rightarrow \overline{f}(u)$.
But $d(\overline{f}(x), \overline{f}(u)) = \lim_{n \to 0} d(f(a_n), f(b_n)) \leq \frac{\pi}{2} < \varepsilon$.
In particular \overline{f} is cartinus. The uniqueness of the extension
Follows from a HW exercise.

Metrics are equivalent if they defense the same conversent sequences, X₁ ~ > X, ~ > X₁ ~ > X di dz (A) If h > x the x -> x d, dz (X, de) X2 (X, d) \mathbf{X}_{i} idiz: Xi > Xz $id_{12}(x) = x$ id₁₂ is continueus (XX)

$$d_{1} ad d_{2} ae equilatiff
id_{12} ad id_{2i} = (id_{12})^{-1} are continuous,$$

$$fith context of normed vector spaces
$$(X, |I|\cdot|I_{1}) \quad (Y, |I|\cdot|I_{2})$$
We have $id_{12} \cdot X = X$,

$$I claum \quad id_{12} \quad i \leq linear,$$

$$id_{12} (x_{1} + y_{2}) = id_{12}(y_{1}) + id_{12}(x_{2})$$

$$id_{12} (c \times) = c id_{12} (x).$$$$

$$i d_{12} (x_1 + x_2) = x_1 + x_2 = i d_{12} (x_1) + i d_{12} (x_2)$$

$$i d_{12} (c x) = c x = c i d_{12} (x)$$
Are linear maps always confiduences?
No. $P[0, 1] \xrightarrow{d} P[0, 1]$ ||. ||_{00}
$$p_n(x) = \frac{1}{n} x^n \quad p_n \Rightarrow 0$$

$$d(p_n)(x) = x^{n-1}$$

$$(\Rightarrow nf x = 1 \quad this is 1,$$

$$|| \qquad || = \frac{1}{n} x^n \quad for all in,$$

$$p_n \Rightarrow 0 \quad || d(p_n) ||_{0} \ge 1, \quad So \quad d(p_n) \neq 0$$

)