Caudy sequence in A with a conversent subsequence $(11A)$ and have conveges in A.

 U phot:

Couchy sequence in A with a convergent subsequence
(MA) and have converges in A.
Upstof.
Than A subset A S X is compact if
 \vec{P}
 \vec{N} is complete and totally looked.
 \vec{N} is complete to dosed in the band of the ban π is A subset $A \subseteq X$ is compact B it is subset A
complete complete and onegent subsequent
1 A. Compact 10
Hotelly bounded to hours totally boxed.

 $X = R$ R : complete \approx closed η : totally bounded \Leftarrow bounded

IR : compact Ex closed⁺ bouded

Ori Grien a compact metric space, which are the cayach

\nSubsets?

\nX: compact

\nA.s complex
$$
\leftarrow
$$
 A is closed.

\nApp: II X is compact and A.s. closed.

\nFor

\nA.s closed.

\nFor

\nA.s closed.

\nOutput

\nOutput

\nDescription:

Containity reed not present completeness now total bandedness

E

 $f(x)=\frac{1}{x}$ (0) $f(C_{0,1})$ is not boarded $\begin{array}{ccc} & \text{if } & \text$ The combination of the two, compretions, is preserved by cartunity, Prop : Suppose fi X-Y is continuous and KEX is compact. The f(K) is compact as well, $PF:$ Let (y_a) be a sequence in $f(k)$. For each n we can pick $x_1 \in \mathcal{K}$ with $f(x_1) = y_0$, Since K is comput we can extruct a subsequence $x \wedge y$ convergency to some $x \in K$. By continuity $f(x_{ij}) \rightarrow f(x) \in f(k)$.

That is $\gamma_{a_j} \rightarrow f(x) \in f(k)$.

That is $y_{45} \Rightarrow f(x) \in f(k)$.

Con: EVT (extreme value theorem)

Suppose X is compreh_e and $f: X \Rightarrow R$ is continuous.

Then there exist x_m and x_m in X such that

for all $x \in X$, $f(x_m) \in f(x) \le f(y_m)$.

Pf: Since X is compret, Cor: EVT (extreme value theorem) Suppose X is compreted and $f:X\rightarrow\mathbb{R}$ is continues. and nonempty Then there exist x_m and x_m in X such that for all $x\in X$, $\mathcal{G}(x_{m})\in \mathcal{F}(x) \leq \mathcal{F}(x_{m})$. $b\;t$: Since X is compact, $f(X)$ is a compact subset of R and is have boarded and in particular boarderl 2 It is nonempty as X is. above. Let $B = \sup f(x)$. There is a sequence by in $f(x)$ converges to B . Since $f(x)$ is compact it is closed and have $\beta \in f(x)$. Here there exists $x_n \in X$ with $f(x_n)=B$. \Box

 $C[0,1] = \{f: [0,1] > 1: 4 \text{ s of } 3$ $\|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)| = \max_{x \in [0,1]} |f(x)|$

II X is compact ne un dedue a souiler space $C(X) = \{ f: X \rightarrow \mathbb{R} : f$ is continuous } $\|f\|_{\infty}$ = max $|f(x)|$ (this is vell defined because

$$
Exercise: ||\cdot||_{\infty}
$$
 is a norm on CC).
\n $Q: |V|_{\infty}$ satisfies of CC are computed.]
\n $CD(1)$

Exercise:
$$
|| \cdot ||_{\infty}
$$
 is a norm an CCx).

\nQ: What satisfies a CC(X) are computed.

\nComplexs: $CD \times 1$

\nTopological completeness:

\n4 space X 75 hypothesis:

\nQ. $CD \times 2$ is a collection of open sets in X with UL

\nQ. $CD \times 2$ is a collection of open sets in X until UL

\nQ. $CD \times 2$ is a multiple sub collections.

\nQ. $CD \times 2$ is a multiple sub collections.

\nQ. $CD \times 2$ is a multiple sub collections.

\nQ. $CD \times 2$ is a multiple subclasses.

\nQ. $CD \times 2$ is a multiple subvalues.

 $2F_9$ is a collection of closed sets in X with the Sante intersection property (i.e. any Coveanty collection of F_{α} 's hus noneapty utesection) they \int $(E_{sec}.2.04e_{100})^{\circ}$ ($E_{sec}.2.09e_{20}$) $\approx 10e_{100}$ $(10e_{100})^{\circ}$ $+$ $\frac{1}{2}$ e_{100} e_{100} e_{100} We equivalent) Comparess and topological comparines are the same. (See text)

$$
DefA function f: X \rightarrow Y
$$
 is uniformly continuous of
for every 220 the 15820 so that f
 $X_{1}, X_{2} \in X$ all $d(x_{1}, y_{2}) < 8$ then $d(f(x_{1}), f(x_{2})) < \epsilon$.

sin is orifomy ets. $\bigcup_{i=1}^n a_i$ it's lip. with Lip const 1. $|sin(x_1) - sin(x_2)| \le |x_1 - x_2|$

More generally if I is Lip cts, with Lyr. const K Ther I is un't continues, $d(f(x), f(x)) \leq K d(x,x).$ Given $\epsilon > 0$, pick $\delta = \frac{\epsilon}{k}$. $\frac{\int_{k}^{k}}{k}$ $\frac{f(x)-f(0)}{|x-b|} \leq K$ \circ / $\frac{Ux - U_0}{X} = \frac{1}{Ux}$

2. 9 , $f(x) = x$ $f: \mathbb{R} \rightarrow \mathbb{R}$

this is not ontownly its,

Det A function fi X-94 is uniformly continues it for every 270 the is 820 so that if $x_1, x_2 \in X$ and $d(x_1, x_1) < 5$ Hen $d(f(x_1), f(x_1)) < \varepsilon$.

There is a bud ϵ >0 that for all $s>0$ there $exist$ unfortunate x_1 and x_2 such that $d(x_1,x_2) < 5$ but $d(f(x_1), f(x_2)) \geq \varepsilon$

 $h > O$ $X > 0$ $\int f(x_2) - \int f(x_1) \Big| = \Big| x_2^2 - x_1^2 \Big|$ $x_i = x$
 $x_i = x + h$ $= | (x+h)^2 - x^2 |$ $= 2xh + h^{2}$ $>$ 2xh 570 ϵ _o = | Prok $h < 8.$ Prok $x > \frac{1}{2h}$ $|f(x)-f(x)| > 2xh > 1$ $|x_2 - y_1| = b \leq s$

 $sin(1/2)$ on $[0,1]$

Equiralat formulation : $H E z0$ there xists $6z0$ such that for all $x \in X$ $f(B_5(x)) \subseteq B_5(f(x))$. Execuse: show this is equivalent uniformly(!) Prop : Suppose fi X-Y is catmuns, II $A S X$ is totally banded ther so is $f(A)$. PF : Suppose $A\subseteq X$ is totally bounder, Let $\subseteq >0$ and fand 8 30 such that for all $x\in X$, $f(B_{5}(x))\in$ \mathcal{B} (f(c))

Sure A is totally bounded there exists a δ -ref $\alpha_{(1)},\ldots,\alpha_{n}$ for A, So $A\subseteq\bigcup_{k=1}^{n}B_{s}(x_{k}).$ $B_{u}f$ then $f(A) = f(U_{k=1}^{n}B_{s}(x_{k}))$ $\bigodot_{k=1}^{n} \bigcirc_{k=1}^{n} f(B_{\delta}(x_{k}))^{\vee}$ $\subseteq \bigcup_{k=1}^{n} B_{\varepsilon}(\mathcal{F}(\kappa_{k}))$ Here $f(x_1),..., f(x_n)$ is an ϵ ret for $f(A)$.