Cor: (Bozano-Weiestras Th)
Every bounded sequence in IR has a concept subsequence.
PF: Suppose
$$
(x_1)
$$
 is a sequence in E-RRI do-
some R>0. Last class we showed that [-AR]

is totally boaded and harce the theorem above slows the sequence has ^a Candy subsequence. Hence the subsequence Converges . ^S i by te completeness o IR

Def: ^A metric space ^X is complete it every [acly squese in ^X converges .

 $L \times _{emp}|_{\mathcal{CS}}$ 1) \mathbb{R}

2)
$$
\mathbb{R}^2
$$
 with λ_1 norm?
\nSuppose $z_n = (x_n y_n)$ is a Caody
\n
$$
Seyvace
$$
\n
$$
Seyvace
$$
\n
$$
|x_n - x_m| \leq \sqrt{x_n + 1 + |y_n - y_m|}
$$
\n
$$
Solvex + 1/m
$$
\n
$$
|x_n - x_m| \leq \sqrt{x_n - x_m} \sqrt{x_n - x_m}
$$
\n
$$
Solvex + 1/m
$$
\n
$$
|x_n - x_m| \leq |x_n - x_m|
$$
\n
$$
Sointx + y_m
$$
\n
$$
Sintx + y_m
$$
\n
$$
Sintx
$$

Construct a
Cardidate
lunt

 N ext: Shad $Z_1 \rightarrow (x, y) = Z$

$$
\|\mathcal{Z} - z_1\|_1 = |x - x_1| + |y - y_n|
$$

$$
|x - x_1| \to 0 \qquad w_n \to w_n \times
$$

$$
|y - y_n| \to 0 \qquad \Longleftrightarrow
$$

$$
w_{n}\rightarrow w_{n}X
$$

\n $d(w_{j}w_{n})\rightarrow0$

$$
|x-y_{n}|+|y-y_{n}|\Rightarrow 0+0
$$

$$
\|z-z_{1}\|_{1} \Rightarrow 0
$$
\n
$$
\frac{d(z,z_{1})}{dz_{1}} \Rightarrow 0
$$
\n
$$
z_{1} \Rightarrow z
$$

$$
T_{\text{hem}} \quad \lim_{n \to \infty} ||z_{n} - z||_{1} = 0.
$$

$$
\mathsf{T}_{\mathsf{hop}} \qquad \|\mathsf{z}_{\mathsf{n}}\mathsf{-} \mathsf{z}\|_{\mathsf{p}} \longrightarrow \mathsf{O}_{\bullet}
$$

 \sim

We'll see in the new feature that
$$
l_2
$$
 is complete,
Year| show (HW) l_4 l_1 l_{∞} l_0 c_0 are all complete.

We will show $(CCo,1,1_{\infty})$ is complete. Buté we have already seen that $(CL_{0,1}, L_{1})$ B not complete. (x, d) $(x,)\nrightarrow x$
 (x, d) $(x,)\nrightarrow x$ $x \neq y$

Let's show
$$
l_2
$$
 is complete.

\nConsider a Cauchy sequence of real numbers; let

\n
$$
X_1 (k)
$$
 denote the k^{th} term of the sequence X_n .\nSo

\n
$$
X_n = (x_n(l), x_n(z), x_n(3), \ldots)
$$
\nWe need a conclude $l_1, l_2, l_3, l_4, l_5, l_5, l_6, l_7, l_8, l_9, l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_7, l_8, l_7, l_7, l_8, l_9, l_9, l_1, l_1, l_2, l_3, l_3, l_1, l_2, l_3, l_3, l_4, l_1, l_2, l_3, l_3, l_4, l_1, l_2, l_3, l_4, l_4, l_5, l_6, l_7, l_8, l_9, l_1, l_1, l_2, l_3, l_4, l_1, l_2, l_3, l_4, l_4, l_5, l_6, l_7, l_8, l_9, l_1, l_1, l_2, l_3, l_4, l_1, l_1, l_2, l_3, l_4, l_1, l_1, l_2, l_1, l_2, l_1, l_2, l_3, l_4, l_4, l$

For each k

$$
|x_{n}(k)-x_{n}(k)|^{2} \leq \sum_{k=1}^{\infty} |x_{n}(k)-x_{n}(k)|^{2} = ||x_{n}-x_{n}||^{2}
$$

\nThat is, $|x_{n}(k)-x_{m}(k)| \leq ||x_{n}-x_{m}||_{2}$.
\nSince (x_{n}) is *Cauchy*, each sequences $(x_{n}(k))$
\n $3_{n}Cauchy_{n}$ and converges to a $(m_{n}+x_{n})(k)$.
\nSeque in R

 $Calddale: \quad x = (k|k)$

Is $x \in l_2$? Does $x_n \rightarrow x_n$ l_2 ? To see that $x \in I_z$ observe that for each K
 $\sum_{k=1}^{k} |x(k)|^2 = \lim_{n \to \infty} \sum_{k=1}^{k} |x_n(k)|^2$

 $\begin{bmatrix} x_n(k) > x(k) \Rightarrow |x_n(k)|^2 > |x(k)|^2 \end{bmatrix}$ $x_n(k)$ \Rightarrow $x(k) \Rightarrow$ $\sum_{k=1}^{\infty} |x_n(k)|^2 \Rightarrow \sum_{k=1}^{\infty} |x(k)|^2$
 $\downarrow w$ \downarrow

$$
\sum_{k=1}^{k} |X(k)|^{2} = \lim_{n \to \infty} \sum_{k=1}^{k} |X_{n}(k)|^{2}
$$
\n
$$
\leq \lim_{n \to \infty} ||X_{1}||_{2}^{2}
$$
\n
$$
\leq \lim_{n \to \infty} ||X_{1}||_{2}^{2}
$$
\n
$$
\leq \lim_{n \to \infty} \frac{S_{i} \log (X_{1})}{S_{i} \log (X_{1})}
$$
\n
$$
\leq \lim_{n \to \infty} \frac{S_{i} \log (X_{1})}{S_{i} \log (X_{2})}
$$
\n
$$
\leq \lim_{n \to \infty} \frac{S_{i} \log (X_{1})}{S_{i} \log (X_{2})}
$$
\n
$$
\leq \lim_{n \to \infty} \frac{S_{i} \log (X_{i})}{S_{i} \log (X_{i})}
$$
\n
$$
\leq \lim_{n \to \infty} \frac{S_{i} \log (X_{i})}{S_{i} \log (X_{i})}
$$
\n
$$
\leq \lim_{n \to \infty} \frac{S_{i} \log (X_{i})}{S_{i} \log (X_{i})}
$$

We've shown there exists $M > 0$ sech that $\sum_{k=1}^{K}|\chi(k)|^{2} \leq M^{2}$ for all K . Mence $\sum_{k=1}^{\infty}|\langle k\rangle|^{2}$ converges (the partial surs ac bourdes a boul and the tems are $S_{\scriptstyle{\mathcal{D}}}$ xe $l_{\scriptstyle{\mathcal{L}}}$

Does $x_1 \rightarrow x_1^2$

Let $\epsilon > 0$. Pick N so that it num $\geq N$

 $||x_1 - x_m||_2 < \varepsilon$. Suppose $n > N_0$

For each K $\sum_{k=1}^{K} |x(k)-x_{1}(k)|^{2} = \lim_{m\to\infty} \sum_{k=1}^{K} |x_{m}(k)-x_{1}(k)|^{2}$

 \leq $\limsup_{m \to \infty}$ $\left\| \begin{array}{cc} \times_{n} & \times_{n} \ \end{array} \right\|_{2}$

Surce $||x_m - x_n||_2 \le \epsilon$ if $m \ge N$

$$
\int \frac{1}{2}x\,dx \leq \int \frac{1}{2}x\sqrt{1+x} \leq \int \
$$

Hence for each
$$
k
$$
,
\n
$$
\sum_{k=1}^{k} |x(k) - x_{n}(k)|^{2} \le \epsilon^{2},
$$
\n
$$
\sum_{k=1}^{k} |x(k) - x_{n}(k)|^{2} \le \epsilon^{2},
$$
\n
$$
\sum_{k=1}^{\infty} |x(k) - x_{n}(k)|^{2} \le \epsilon^{2},
$$

So:
$$
f \cap Z \cap U
$$
 then $||x - x_{1}||_{2} \leq \epsilon_{0}$

Herce $x_{1} \rightarrow x$ M l_{2}