Continung inductively we can find a sequence (ax) with each a_{k} M A and $d(a_{k}, a_{e})$ 7 E if $k \neq l_{o}$ No subsequere can be Cauchy, for any couchy subsequere would cartain two tens at distance, E/z fun, euly ro moe thin

Examples: 1) R

2)
$$\Pi^2$$
 with l_1 norm?
Suppose $z_n = (x_n, y_n)$ is a (andy
sequence.
Observe then $|x_n - x_m| \le ||z_n - z_m||_1$.
Given $\Xi = 0$ we can find N so if
 $n_1m \ge N$ then $||Z_n - Z_m||_1 \le \varepsilon$.
But then if $n_1m \ge N$ $|x_n - x_m| \le ||z_n - z_m||_1 < \varepsilon$.
So (x_n) is (andy and can uses to a lost x_n
Similarly $y_n = y_n$

Construct a condudule limit

(4,4),

Next: Show Z1 > (x,y) = Z

$$\| \overline{Z} - \overline{z}_n \|_1 = |x - x_n| + |y - y_n|$$

$$|x - x_n| \rightarrow 0 \qquad w_n - |y - y_n| \rightarrow 0$$

$$w_n \rightarrow w \quad h \quad X$$

 ≤ 7
 $d(w, w_h) \rightarrow D$

$$|x - x_n| + |y - y_n| = 0 + 0$$

Then
$$\lim_{n \to \infty} ||Z_n - Z||_1 = O.$$

Then
$$||z_n - z|| \rightarrow 0$$
.

We will show (([0,1], Low) is complete. But: we have already seen that (CLO, 17, L) 13 not complete, $\begin{array}{c} (X, d_{1}) & (Y_{n}) \xrightarrow{J_{1}} X \\ (Y, d_{2}) & (Y_{n}) \xrightarrow{J_{2}} Y \end{array}$ X \$ 4

Let's show
$$l_{z}$$
 is complete.
Consider a Curchy service $(4n)$ in l_{z} .
Each X_n is a service of real numbers; let
 $X_n(lk)$ denote the k^{44} term of the service X_n .
So $X_n = (X_n(l), X_n(2), X_n(3), --)$
We need a conditude limit.
 $X = (X(l), X(2), X(3), --)$

For each K

$$\begin{split} \left| \left| \chi_{n}(k) - \chi_{m}(k) \right|^{2} \leq \sum_{k=1}^{\infty} \left| \chi_{n}(k) - \chi_{n}(k) \right|^{2} = \left\| \chi_{n} - \chi_{n} \right\|_{2}^{2} \\ That is, \left| \chi_{n}(k) - \chi_{m}(k) \right| \leq \left\| \chi_{n} - \chi_{m} \right\|_{2}^{2} \\ Since (\chi_{n}) is Caudy, each sequence (\chi_{n}(k)) \\ B a Caudy, and converses to a (mat $\chi(k)$)
 Sequence in $\mathbb{R}$$$

Is XElz? Does Xn = X mlz? To see that $x \in I_{z}$ observe that for each K $K_{z}^{\pm \infty}$ $K_{z}^{\pm 1}$

 $\left[\begin{array}{c} \chi_{n}(k) \rightarrow \chi(k) \rightarrow \\ \end{array}\right] \left[\begin{array}{c} \chi_{n}(k) \rightarrow \\ \\\\ \\ \[\begin{array}{c} \chi_{n}(k) \rightarrow \\ \end{array}\right] \left[\begin{array}{c} \chi_{n}(k) \rightarrow \\ \\\\ \[\begin{array}{c} \chi_{n}(k) \rightarrow \\ \end{array}\right] \left[\begin{array}[\begin{array}{c} \chi_{n}(k) \rightarrow \\ \\\\ \\\\ \[\begin{array}[\begin{array}{c} \chi_{n}(k) \rightarrow \\ \end{array}\right] \left[\begin{array}[\begin{array}{c} \chi_{n}(k) \rightarrow \\ \\\\\\ \[\begin{array}[\begin{array}{c} \chi_{n}(k) \rightarrow \\\\\\\\ \\\\ \[\begin{array}[\begin{array}[\begin{array}{c} \chi_{n}(k) \rightarrow \\\\\end{array}\right] \left[\begin{array}] \\\\\\ \\\\ \[\begin{array}[\begin{array}[\begin{array}{c} \chi_{n}(k) \rightarrow \\\\\\\\\\\\ \\\\ \\\\\end{array}\right] \left[\begin{array}] \[\begin{array}[\begin{array}{c} \chi_{n}(k) \rightarrow \\\\\\\\ \\\\ \\\\ \\\\\end{array}\right] \left[\begin{array}] \[\begin{array}[\begin{array}{c} \chi_{n}(k) \rightarrow \\\\\\\\\\ \\\\ \\\\\end{array}\right] \left[\begin{array}] \\\\\\ \\\\\\\end{array}\right] \left[\begin{array}] \[\begin{array}] \\\\\\ \\\\\end{array}\right] \left[\begin{array}] \[\begin{array}] \\\\\\ \\\\\end{array}\right] \left[\begin{array}] \\\\\\ \\\\\end{array}\right] \left[\begin{array}] \[\begin{array}] \\\\\\ \\\\\end{array}\right] \left[\begin{array}] \\\\ \\\\\end{array}\right] \left[\begin{array}] \\\\\\ \\\\ \\\\\end{array}\right] \left[\begin{array}] \\\\\\ \\\\\end{array}\right] \left[\begin{array}] \\\\\\ \\\\\end{array}\right] \left[\begin{array}] \\\\\\\\ \\\\\end{array}\right] \left[\begin{array}] \\\\\\\\\end{array}\right] \left[\begin{array}] \\\\\\\\\end{array}\right] \left[\begin{array}] \\\\\\\end{array}\right] \left[$

$$\frac{k}{2} |x(k)|^{2} = \lim_{n \to \infty} \frac{k}{k} |x_{n}(k)|^{2}.$$

$$\leq \lim_{n \to \infty} \sup_{k=1} ||x_{n}||_{2}^{2}.$$

$$n \to \infty$$

$$\sum_{n \to \infty} ||x_{n}||_{2}^{2}.$$

$$\sum_{n \to \infty} ||x_{n}||_{2}^{2}.$$

$$\sum_{n \to \infty} ||x_{n}||_{2}^{2}.$$

$$\sum_{n \to \infty} ||x_{n}||_{2}^{2}.$$

$$\sum_{n \to \infty} ||x_{n}||_{2}.$$

$$\sum_{n \to \infty} ||x_{n}||_{2}.$$

$$\lim_{n \to \infty} ||x_{n}||_{2}.$$

We've shown the exists M70 such that $K = \left| x(k) \right|^2 \leq M^2$ k = 1for all K. Mense ZIX(K) Conveyes (the partial sug K=1 are bounded about ac counder a boul and the terms are non regarine). So XE lz.

Does Xn > X.

Let E70. Prek N so that if nom 2N,

Il x1-xmllz < E. Suppose N>No

 $\leq |m \sup || \times m - \times n ||_{Z}$

Some $\|X_m - X_n\|_2 \leq \varepsilon$ if $m \geq N$,

Hence for each K,

$$\begin{array}{l}
K \\
\Sigma \\
k=1
\end{array} \left[\left| X \left[k \right] - X_{n} \left(k \right) \right|^{2} \leq \varepsilon^{2}, \\
K=1
\end{array}$$
Torsequently,
$$\left\| \left| X - X_{n} \right\|_{2}^{2} = \sum_{k=1}^{90} \left| \left| x \left[(k) - x_{k} (k) \right]^{2} \right|^{2} \leq \varepsilon^{2}.$$

onsequently, $\|X - x_n\|_z = \sum_{k=1}^{\infty} |x(k) - x_n(k)|^2 \leq \varepsilon_0$ k=1

So: if n 3 N then || X-Xy || Z SE.

Herce $x_{1} \rightarrow x \quad M \quad l_{2}$