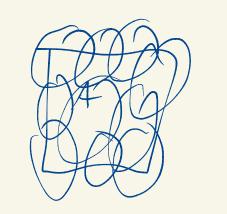
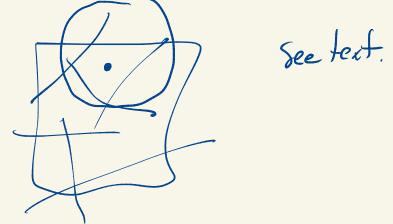
Def: A set A = X is, like, totally boarded if for every E >0 there are faritely many points x,,.., x, EX such that $A \subseteq \bigcup_{k=1}^{n} \mathcal{B}_{\varepsilon}(x_{k})$. Such a collection of points is called an E-net. 620 total laoundedpers => bace 1-net . boundedness

bounded => totally bounded? No l_{1} $A = \{e_{k}\}$ $e_{k} = (0, ..., 0, 1, 0,)$ kth Clany A loes not admit a 1 net. $If J \neq k \qquad ||e_j - e_k||_{,} = Z$ So any $B_1(x) \subseteq l_1$ can contain at most one e; $(if_{Y,z} \in B, (x) d(y,z) < Z)$ So any finite collection of 1-balk contains at nost

faitely may exis. So there is no 1-net. The set A is bounded (it's contribued in a ball of radius (D contect at O) but not totally handled. Lemmo: A set A = X is totally boarded iff for every E>0 three exist A1, -, An with diam AK < E and $A \subseteq \bigcup_{k=1}^{n} A_k$.





Cor: [0,1] is totally bounded, Use subintends [k-1, k] 14k 4 N $d(m(I_{k,n}) = 1)$ Exercise: [-R, R] is totally bounded for all R>O. Exercise. If BEA and A is totally bounded the Bis totally bouded, Exercise: bounded subsets of IR are totally beended

Total boundedness is closely connected to Cauchy sequences
Lemmi: Suppose (xn) is Cauchy. Then Z xn: NEWZ
is totally bounded.
Pf: Let E>O. [Job: Fund on E net]. These exists N
such that if nim? N then
$$d(x_n, x_n) < E$$
.
I claim that Z x, xz, ..., x, Z is on E net.
Indeed if u? N then $d(x_n, x_n) < E$ and
 $x_n \in B_E(x_n)$, Otherwise $x_n \in B_E(x_n)$.

Continung inductively ve can fond resided sets Az A₁ A, 2 Az 2 Az 2 --with dem AK K. \sim Pick n, with Xn, EA,. (χ_{Λ}) Pink nz 7 n, with Xnz & Az. This is possible since Az (X, Xz, ..., Xnj 13 infinite, Continung inductively we saleet indices M/Linz < NzLwith the Ak.

I clum (X1K) B Caudy. Inded lot E70.
Prok K so that
$$\frac{1}{K} \subset E$$
.
Thus if $k, k \ge K$ then $x_k \in A_k \subseteq A_k$
 $x_k \in A_k \subseteq A_k$
at hence $d(x_k, x_k) < \frac{1}{K} < E$.
Thus: A set $A \subseteq X$ is totally bounded iff every
sequence in A admits a Cauchy subsequence.
Pf: Suppose A is totally bounded. The (x_k) is
a sequence in A , $\sum x_k : x_k \in A$ is totally bounder.

and the previous result implies the sequence has a
Couchy subsequence.
Suppose A is not totally bounded.
(Jobi Find a sequence in the no couchy subsequence)
Since A is not totally bounded there is Ero such
that A does not admit on E-note
Let 0,6 A. I claum that
$$A \ B_{e}(a_{1}) \neq \phi$$
.
This is true, for otherwore $\Xi a_{1}3$ B an E-note
Pick $a_{2} \in A \ B_{E}(a_{1})$. Since $\Xi a_{1}, a_{2}3$ is not on
 Σ -net, $A \ \bigcup_{k=1}^{2} B_{E}(a_{k}) \neq \phi$.

Continung inductively we can find a sequence (ax) with each $a_k M A$ and $d(a_k, a_e) \neq E$ if $k \neq l_o$ No subsequere can be Cauchy, Sor any couchy subsequere would cartain two tens at distance, E/z fun, euly ro moe thin

other