Closed sets are completely determined by convergne of sequences,

Two metrics might be different but still determine the same conversat sequences. In this case, they detamine the some orpen and closed sets.

Exercise: An abiting uncon of open sets is open. Exercise : An arbitry intersection of closed sets is closed . An abitry intersection of open sels need not be open. (int) Def: Given ^a set d in ^a metric space, # . (. He closure of At is the intersection of all closed sets containing A .

Observe:
$$
\overline{A}
$$
 is closed, \overline{A} is the smallest closed set
\ncontaining A,
\nPop: Leh $A \subseteq X$ and let $x \in X$. TFAF
\n1) $x \in \overline{A}$
\n2) $\forall \xi > 0$ $\overline{b}_{\xi}(x) \wedge A \neq \emptyset$ (i.e. $\exists x \in A$ with $d(x) > \epsilon$)
\n3) $\overline{b}_{\xi(x)} \wedge a$ sequence in A converges by b x.
\nPy: 1) = 2) *with* $\xi \ge 0$ $\overline{b}_{\xi}(x) \wedge A = \emptyset$. $\overline{b}_{\xi(x)} \subseteq A$.
\nSince $\overline{b}_{\xi}(x) = \overline{b}_{\xi(x)} \wedge \overline{A} = \overline{b}_{\xi}(x) = \overline{b}_{\xi(x)}$.
\nHence $x \notin \overline{A}$.
\n2) = 3) For each *with* $\overline{p}_{\xi}(x) \in B_{V_{n}}(x) \wedge A$.

Then
$$
(x_1)
$$
 is a sequence in A with $d(x_1) < \frac{1}{n} \gg 0$.

\nSo $x_1 \gg x_2$

\nSuppose (x_1) is a sequence on A converges to x.

\nThen x_1 is also a sequence in A. Hence the unit of the square of x_1 is the sum of the square of x_1 .)

\nNote: $\overline{R} = R$.

\nThus, $\overline{R} = R$.

\nThus, $\overline{R} = R$.

\nSubitivity will by thus x_1 and x_2 .

Where:
$$
\overline{R} = \mathbb{R}
$$
. $(\sqrt{2})$

\n \overline{A} is the set of points in X. That can be approximated arbitrarily well by fluxes in A.

Def: We say A is dense $x \times .4 = 1$ X. Ve say A is dense in
A space X is separable
Jense subset. A space X is separable it it admits a countable dense subset.

Countable is managellate, separable is almost as good,

Def: We say A is deuxe x, x, f $\overline{A} = x$.

A spece x, x seperable it it addits a countile

Lexel subject.

Countrilly is manipolety soperable is always as good,

PLO, $I \subseteq C$ LO, I $I = PC$, $I = PC$, $I = P$
 $P = 2$, $I = 2$
 $P[0,1] \subseteq C[0,1]$ I P I _{o} I o P n I Closed?
(de se?) We⁷¹¹ prove $P[0,1] \subseteq C[0,1]$ Is $P[0,1]$ apen!
 N

polynomials $P[0,1]$ $\frac{C[0,1]}{C[0,1]}$ apen!
 $\frac{C[0,1]}{C[0,1]}$ $\frac{C[0,1]}{C[0,1]}$ $\frac{C[0,1]}{C[0,1]}$ \bigwedge set.
Whe seperable is almost as good,
.
[0,i] Is PEo,iJ apen?
dosed?
We'll prove
this $\frac{1}{\frac{1}{\frac{1}{1}}\cdot\frac{1}{1}}$ apen?
Closed?
Clerx?) We'll
Clerx?) We'll

Indeed, polynomials with interval coefficients are *does*
\n
$$
M_{\sigma}^{1}(res \text{ on } relab-d)
$$
\n
$$
M_{\sigma}^{1}(res \text{ on } relab-d)
$$
\n
$$
M_{\sigma}^{1}(res \text{ on } relab-d)
$$
\n
$$
M_{\sigma}^{1}(x,y) = \lambda_{x}(x,y)
$$
\n
$$
L_{x}
$$
\n

Product spaces

X, y metric spaces de, dy

 $X_{x}Y = \{ (x,y): x \in X, y \in Y \}$

 $(x_{n,4n}) \longrightarrow (x,y) \iff x \rightarrow x, 7n \rightarrow y$

 $d_{x,y}((x_{0},y_{0}),(x_{1},y_{1})) = \begin{cases} d_{x}(x_{0},x_{1}) + d_{y}(x_{0},y_{1}) \\ \int d_{x}^{2}(x_{0},x_{1}) + k_{y}^{2}(x_{0},y_{1}) \\ max(A_{x}(x_{0},x_{1}),d_{y}(x_{0},y_{1})) \end{cases}$

Sall metrics

Continuity: Def: We say
$$
f: X \rightarrow Y
$$
 is continuous at $x \in X$ if

\n
$$
\begin{array}{ccc}\n\oint_{\partial r} d\mid E > 0 &\text{there is } S > 0 &\text{such that} \\
\oint_{\partial r} d\mid y \in B_{\delta}(x), &\text{d}y(\cdot f(x), f(y)) < \epsilon, \\
\downarrow & \downarrow & \downarrow & \downarrow \\
y \text{ with } d_{x}(x,y) < \delta\n\end{array}
$$

$$
f: \mathbb{R} \to \mathbb{P}
$$
 is $\frac{1}{x}$ of x if $\int x \, dx$ all $\epsilon > 0$ the *exists*
570 such that for all $y = w$, $||x - y|| \le 6$ then

$$
|f(x) - f(x)| \le \epsilon.
$$

Let $670.$ They sure f is σ ts. There e_1 ists $6 > 0$ such that $f(B_{\epsilon}(x)) \subseteq B_{\epsilon}(f(x))$. Since $x_1 \gg x$ there exists N such that if $n \ge N$, $x_n \in B_S(x)$. But then β $n \gg N$, $f(x_1) \in f(f(x)) \in B_{\epsilon}(f(x))$. Have $f(x_1)$ s $f(x)$. Conversely, suppose f is not continuous at x. Then there exists $\epsilon > 0$ such that So all $6 > 0$ $f(B_s(x)) \not\subseteq B_e(x)$. So for each neW We can pick $x_0 \in B_{1_n}(x)$ such that $f(x_1) \notin B_g(f(x))$. Obsence $x_1 \rightarrow x_0$ But $f(x_0) \rightarrow f(x)$ since $B_g(f(x))$ contains no terms $\begin{pmatrix} 1 \\ f(y) \end{pmatrix}$

 $F: Clo_1 \rightarrow \mathbb{R}$ $E.6$ $F(f) = f(0)$ $(e^{\circ}=\iota)$ $F(e_{x\rho}) =$ $F(s_{19}) = 0$ Is F cts it C[O/] is given the l_p norm? $p=\infty$? Yes. Suprose $f_1 \rightarrow f$. Then $||f-f_{\lambda}||_{\infty} \rightarrow \infty$ $B +$ $| f_{1}(0) - f_{0}(0) | \le || f_{n} - f ||$ $|f_{\Lambda}(\omega) - f(\omega)| \rightarrow 0.$ \sim G_0 $f_n(0) \rightarrow f(0)$ 60 $F(f_n) \Rightarrow F(f)_n$

No: not continuous.