Closed sets are completely deterined by convegence of Sequerces,

Observe:
$$\overline{A}$$
 is closed! It is the shallest closed set
containing \overline{A} ,
Prop: Let $A \subseteq X$ and let $x \in X$. TFAE Yes,
1) $x \in \overline{A}$
2) $\forall E \ge 0$ $\mathcal{B}_{E}(x) \land A \neq \phi$ (i.e. $\exists y \in A$ with $d(yx) < \tilde{e}$,
3) there is a sequence in A conversity to x .
 $p_{5:}$ () = 7 2) Vin $\{z\} = 7 \{1\}$
Suppose for some $E \ge 0$ $\mathcal{B}_{E}(x) \land A = \phi$. Then $\mathcal{B}_{E}(x)^{2} = A$.
Since $\mathcal{B}_{E}(x)^{2}$ is closed and contains A , $\overline{A} = \mathcal{B}_{E}(x)^{5}$.
Hence $x \notin \overline{A}$.
 $2) = 3$ For each we M pick $x_{n} \in \mathcal{B}_{V_{n}}(x) \land A$.

Then
$$(4n)$$
 is a sequence in A with $d(4n) < \frac{1}{n} \Rightarrow 0$.
So $x_n \Rightarrow x_n$.
 $3) = 71)$
Suppose $(4n)$ is a sequence on A converging to x_n .
Then it is also a sequence in \overline{A} . Hence the bunt
of the sequence is also in \overline{A}_{n} .

Def: We say A is dense h X if A = X. A space X is separable if it admits a counterble dense subset.

Countable is managetable, separable is almost as good,

Is Plosid open! $P[0,1] \subseteq C[0,1]$ Closed? polynomials dese? We'll prove This

Indeed, polynomials with rational coefficients de derse in CLO, 17. (Which leads to CLO, 17 being separable) Metrics on related spaces. If AEX then A is a metric space in its own right. $d_{\mathcal{A}}(x,y) = d_{\mathcal{X}}(x,y)$ Exercise: $U \subseteq A$ is open $G \cong I V \subseteq X Hut is open$ $and <math>U = A \cap V_i$ WGA is closed on I ZEX that is closed ad $w = A \Lambda Z$. (x) a sour. nn Aas BX $X_{\Lambda} \xrightarrow{A} X \leftarrow X_{\Lambda} \xrightarrow{X} X$

Product spaces

X, Y metric spaces dx, dy

 $X \times Y = \frac{2}{2} (x, y)$: KEX, YEY 3

 $(\chi_{n}, \chi_{n}) \longrightarrow (\chi, \chi) \in \mathbb{Z}$ $\mathcal{K} \rightarrow \mathcal{K}, \mathcal{Y} \rightarrow \mathcal{Y}$

 $d_{X*Y}((x_{0},y_{0}),(x_{1},y_{1})) = \begin{cases} d_{X}(x_{0},y_{1}) + d_{Y}(y_{0},y_{1}) \\ \int d_{Y}(y_{0},y_{1}) + l_{Y}^{2}(y_{0},y_{1}) \\ M_{0}u(l_{X}(y_{0},y_{1}), d_{Y}(y_{0},y_{1})) \end{cases}$

Sall metrics

Continuity Def: We say
$$f: X \rightarrow Y$$
 is continuous at $x \in X$ if
for all $E > 0$ there is $\delta > 0$ such that
for all $y \in B_{\delta}(x)$, $d_{Y}(f(x), f(x)) \leq E_{\delta}$
 y with $d_{\chi}(x,y) \leq \delta$

$$f: \mathbb{R} \to \mathbb{R}$$
 is its of x if for all $\varepsilon > 0$ the exists
 570 such that for all y with $|x-y| < 5$ that
 $|f(x) - f(y)| < \varepsilon$.

Let EZO. They suce f is ots, there exists 8>0 such that $f(B_{\xi}(x)) \subseteq B_{\xi}(f(x))$. Since X_> X there exists N such that Af n> N, X_n & B_{S}(X). But then if $N \gg N$, $f(x_n) \in f(B_{\mathcal{G}}(x)) \subseteq B_{\mathcal{E}}(f(x))$. More f(x) > f(x). Conversely, suppose f 13 not continuous at X. Then there exists E>O such that for all 6>0 f(Bs(x)) & Be(x). So for each nEN we can pick $x_{N} \in B_{i_{N}}(x)$ such that $f(x_{n}) \notin B_{\varepsilon}(f(x))$. Observe x1 -> X. But f(x1) > f(x) since Balf(x) contains no terms (72) of the sequence.

F: CLO, J-> R E.6. F(f) = f(o) $(e^{\circ}=1)$ F(exp) = 1[-(SM) = 0 Is Fits if CCO, J is given the Lp norm? p=oc? Yes Suppose front. Then || f - frill >> 0 But $|f_{n}(o) - f(o)| \leq ||f_{n} - f||$ $|f_n(o) - f(o)| \rightarrow O$ 50 So $f_n(o) \longrightarrow f(o)$ 50 $F(f_n) \rightarrow F(f)$

No: not continuous.