De l'est (x) be a sequence in a metre space X. We say $x_n \gg x$ ((x_n) converges to x) of for all $6>0$ $\exists N$ so f $n\ge N$ $d(x,y) < \epsilon$, Det: A servere a Cauchy it VETO IN sit. $H_{n,m}\geq N$ $d(x_{n},x_{m})<\epsilon$.

 $|| f_n ||_{\infty} = |$ for all n, $d(f_{n,0}) = |$
(or $|| f_{n-0} ||_{\infty}$

Exercise $x_n \rightarrow x$ $\iff d(x_n, x) \rightarrow 0$

 $\int_A \rightarrow 0$ $\left\| \int_{\Lambda} \left| \right|_{\rho} = \frac{1}{2n}$ $d(f_n,0)=\frac{1}{2n}\rightarrow0$ $\int_{0}^{1} \frac{L_{1}}{2} d\mu$ L_{p}

Lexercise: Determine if $f_n \rightarrow 0$ in Lp 1<p < 0

Exercise: Show that converget sequences are Cauchy, Execte: Blow (Sn) is not convergent M Loo sense. (Ment: show it is not Cardy.) Bad epsilor: 1/2 1 of f_{N}

This sequence is Cauchy in
$$
L_1
$$
.
Given some N_1 , $A_{M_1} \times N$ then $(g_n - g_n)(x) = 0$, $A_{N_1} \times S_2$
or $A_{N_2} \times S_1$
or $A_{N_1} \times S_2$

$$
|g_{n}(x)| \leq
$$

||g_{n}-g_{m}||_{1} = $\int_{0}^{1} |(g_{n}-g_{m})(x)| dx$

$$
=\int_{1/2}^{1/2+\frac{1}{w}}|g_{1}-g_{1}|_{(x)}|_{dx}
$$

$$
\leq \int_{1/2}^{1/2+\frac{1}{w}}2 dx
$$

$$
=\frac{2}{w}
$$

 P_{ick} $x_0 = \frac{1}{2}$. Then $g_1 = 1$ on $[x_0, 1]$ for

$$
\int_{x_{0}}^{1} |g(x)-1| dx = \int_{x_{0}}^{1} |g(x)-9x^{2} dx| dx \le ||g-gx||_{1} \to 0
$$
\n
$$
\int_{x_{0}}^{1} |g(x)-1| dx = 0. \qquad \text{Here each} \tag{9.4-1} \text{ for all } x \in [x_{0}, 1].
$$
\n
$$
\int_{x_{0}}^{1} |g(x)-1| dx = 0. \qquad \text{Here } |g(x)-1| = 0
$$
\n
$$
\int_{x_{0}}^{1} |g(x)-1| dx = 0. \qquad \text{for all } x \in [x_{0}, 1].
$$
\n
$$
\int_{x_{0}}^{1} f(x) dx = 0 \qquad \text{then } g(x) = 1 \qquad \text{for all } x > \frac{1}{2}
$$

Since **argument**:
$$
g(x)=0
$$
 for all $x < \frac{1}{2}$.

\nThen 15 as such $g \in [0, 1]$

Def: Let X be a metric space
\nGiven
$$
x \in X
$$
 and $x \in O$
\n
$$
B_r(x) = \frac{2}{5}y \in X: d(x,y) \times x \times \frac{2}{5}
$$
\n
$$
S_r(x) = \frac{2}{5}y \in X: d(x,y) \times x \times \frac{2}{5}
$$
\n
$$
S_r(x) = \frac{2}{5}y \in X: d(x,y) \times x \times \frac{2}{5}
$$

$$
Sumiluly = \frac{1}{8r}(x) = \frac{1}{24e^{x}} \text{d(x, y)} \leq r^{2}
$$

$$
D_{e}f: A_{se}f A \in X
$$
 is open A for all $x \in A$
Here exists r>0 at. $P_{n}(x) = A$

 $E_{x_{\mu\nu\rho}}|e_{s}:$

 $(a,b) \subseteq R$

4 \bullet_{χ}

 $\phi \leq \chi$ $\frac{1}{2}$ $\beta_{R}(\chi) \subseteq \chi$ $r = R - d(z,x)$ (age \triangle weg

$$
A = \{f \in C[0,1]: f(0) > 0\}
$$

\n $I_{s} A$ open in $C[0,1]$?
\n I_{cs} in L_{∞} sense,
\n $G_{\text{max}} f \in A$ let $r = f(0) > 0$.
\n E_{feose} : sl_{max} $B_{r}(f) \in A$.
\nIf $g \in B_{r}(f)$ then $||f-g||_{\infty} < r$
\n $S_{0} = \{0\} - g(\infty) < \frac{1}{2} \}$

But this is false in the L_1 norm, If $A \subseteq X$ and if $x \in A$ and (x_1) is Note: a sequence in A^C with xn>x, they A is not span. Isleed it act and A is open and ans a then there is a tail of the sequence contained in A. $\begin{pmatrix} a^2 \\ a^2 \end{pmatrix}$ IV, $a_1 \ge b_2(a)$ for $n > N$.

$$
f=1.6A
$$

\n $\int_{0.1}^{6} 4x$
\n $\int_{0.1}^{6} 4x$

Hence for each ne N We can select $f_{\Lambda} \in A^{c} \cap B_{1}(\chi)$. For each a $d(x, x) < \frac{1}{n} \rightarrow \infty$ $\begin{array}{ccc} \infty & x_{1} & \rightarrow & x_{0} \end{array}$ Def: ^A set ^A is bed if ^A is open. $[0,1]$ is closed $\big[0,1\big] = (-\omega, 0) \bigcup (\bigcup \infty)$

 $Propi A$ set A is closed iff wherever (x_n) is a sequence in A converging to some land x_j in fact $x \in A$.

Pf: Suppose A is closed and
$$
y \notin A
$$
. Then
\nthe exists v>70 with h_1u_1 s A^c. Hence
\nany sequence m X convons by must control
\n $+$ terms in h_1u_1 and $+$ terms in A ^c.
\nSo no sequence m A can converge to y_0
\nConversely suppose A is not closed, so A^c
\nis not open. Then then exists $x \in A^c$ and
\na sequence in $(A^c)^c$ converges to x
\nThat is, there is a sequence in A
\nConvers to a point $x \notin A$.