$F(x) = 549\{F(z): z \in \Delta, z \in x\}$ Define

Gaerde! F is increasing $(x \le y \Rightarrow F(x) \le F(y))$ Menecence $F(x_1) = F(x_2)$ with $x_1 < x_2$ $X_i = 0. a_1 - a_n | 0 - \cdots (base 3)$ \mathcal{L} $(lu$ se3) $X_L = 0.4$ $a_1 \cdots a_n$ Z O \cdots

Metric Spaces:

X is a set A metric on X is a function d: XxX ->> R $such$ that 1) $d(x,y) \ge 0$ U x $7.2\n\times$ 2) $d(x,y) = 0$ iff $x = y$ $d(x,y) = d(y,x)$ $\left(3\right)$ $d(x,z) \leq d(x,y) + d(yz)$ 4) 5 Triangle Megality X

A set X equipped with a metric is a metric space $||x|| = |x|$ $e.g. \qquad \mathbb{R}$, $d(x,y) = |x-y|$ R^3 d(x,4) = $x - y$
 $|x - y|$
 $(x - y)$ $(x_{3} - x_{3})^{2}$ $||x|| = \sqrt{x^2 + x^2 + x^2 + x^2}$ Eacliden distance Er $S^{2} = \{x \in R^{3}: d(x,0) = 1\}$ $u_{i}th$ a metric is a <u>metri</u>
 $d(x,y) = |x-y|$
 $\int (x,y) dx$
 $\sum x \in R^{3} : d(x,0) = 1$
 $d(x,y) = x$
 $d(x,y) = x$
 $x \in R^{3}$
 $d(x,y) = x$
 $x \in R^{3}$
 $d(x,y) = x$
 $x \in R^{3}$
 $x \in R$ $(X_i - Y_i)$
- a c) Aden d
d (x, 0) = 13 $\left(-\right)$ d(x, y) is again Euclidem distance . Cany subset of ^a metric space is natually a metric space) $E[0, 1],$ $f: [0, 1] \rightarrow \mathcal{R}$, continuous $d(f,g) =$ $\begin{array}{c} x \rightarrow 0 \\ x \in L_0, i \neq 0 \end{array}$ $|f(x) - g(x)|$

$$
||f||_{\infty} = \max_{x \in I_{0}, I_{0}} |f(x)| = \max_{x \in I_{0}, I_{1}} |f(x) - g(x)|
$$
\n
$$
= \max_{x \in I_{0}, I_{1}} |f(x) - g(x)|
$$
\n
$$
= \max_{x \in I_{0}, I_{1}} |f(x) - g(x)|
$$
\n
$$
= \sum_{x \in I_{0}, I_{1}} |f(x) - g(x)|
$$
\n
$$
= \sum_{x \in I_{0}, I_{1}} |f(x) - g(x)|
$$
\n
$$
= \sum_{x \in I_{0}, I_{1}} |f(x) - g(x)|
$$
\n
$$
= \sum_{x \in I_{0}, I_{1}} |f(x) - g(x)|
$$
\n
$$
= \sum_{x \in I_{0}, I_{1}} |f(x) - g(x)|
$$
\n
$$
= \sum_{x \in I_{0}, I_{1}} |f(x) - g(x)|
$$
\n
$$
= \sum_{x \in I_{0}, I_{1}} |f(x) - g(x)|
$$

Hence
$$
d(f,h) = sup_{x \in I_{0}, I_{0}} |f(x) - h(x)| \leq d(f,g) + d(g,h)
$$

A related concept applies to vector spaces A nom on a vector space V is a function $\|\cdot\|:V\to\mathbb{R}$ s *atisting* 1) $||x|| \ge 0$ $\forall x \in V$ $Z)$ $\|x\| = 0$ \Leftrightarrow $x = 0$ 3) $\|\alpha x\| = |\alpha| \|\gamma\|$ $\forall \alpha \in \mathbb{R}, x \in V$ computability
4) $\|\alpha x\| \le \|\gamma\| + \|\gamma\|$ $4\int |x+y| \leq ||x|| + ||y||$ trimsle megality $x+y = \frac{p}{d}y$ Given a norm on a vector space we obtain an

Method	metric	$d(x,y) = x-y $
node	$d(x,0) = x-0 = x $	
Exercise: 5haw that this mebr really is a metric.		
Most of our previous metric. Constructions were of the type		
Woms on \mathbb{R}^2		
$l_i: x _i = x_i + x_i $	$x = (x_i, x_2)$	
$l_i: x _i = \frac{ x_i + x_i }{\sqrt{x_i^2 + x_2^2}}$		
$l_k: x _o = \max_{\substack{i \neq i, i, j \\ j \neq j, i}} (x_i , x_i)$		
$l_k: x _o = \max_{\substack{i \neq i, i, j \\ j \neq j, i}} (x_i , x_i)$		
Exercise: Show that the l_i and l_i norms are normally		
Well soon prove the l_i + i in the integral inequality		

$$
l_{\rho} \qquad |\xi_{\rho} < \infty
$$
\n
$$
\|y\|_{\rho} = (\|x_{1}\|^{p} + \|x_{2}\|^{p})^{1/p}
$$

Given a nome $||.||$ the closed unit ball is χ_{ρ} \overline{B} = $\{x: ||x|| \leq l\}$ l_1, l_2, l_{∞} $\sqrt{x^{2}+y^{2}} \leq$ $X_{1}^{2}+\gamma_{2}^{2} \leq 1$ $|x_1|+|x_2|\leqslant$ $X_1 + Y_2 \le 1$ $x_2 \leq -y_1$

 $|x_1| \leq |$ and $|x_2| \leq |$

$$
E = x e c s e \qquad ||x||_p \longrightarrow ||x||_{q_0} \text{ as } p \to \infty.
$$
\n
$$
\int_{x}^{2} x d\mu \mathbb{R}^{2}
$$

The
$$
l_p
$$
 norms generalize to any l_l^N
\nbut also to certain sequences,
\n $|0e+1$: Given $1 \le p \le \infty$, l_p is the set of
\n $5e_1$ times $x = (x_n)$ with l_{∞} is the set of
\n $\sum_{n=1}^{\infty} |x_n|^p|^{\frac{1}{p}} \le \infty$,
\n $\sum_{n=1}^{\infty} |x_n|^p|^{\frac{1}{p}} \le \infty$,
\n $||x||_{\infty} = \sup_{n} |x_n|$
\n $||x||_{\infty} = \sup_{n} |x_n|$

I