b) x admits exactly two expansions. One is

$$O_{1,a_{1}} - \cdots - a_{N} O_{2} - \cdots O_{N}$$

with $a_{N} \neq O$ and the other is
 $O_{2,a_{1}} - \cdots - (a_{N}-1)(p-1)(p-1) - \cdots$

Cantor Set

$$A_{0} = [0,1]$$

$$A_{1} = [0,3] \cup [\frac{2}{3},1]$$

$$A_{1} = [0,3] \cup [\frac{2}{3},1]$$

Az= _____ +|+|

 $A_{k+1} = \frac{1}{3}A_k \left(2 \left(\frac{2}{3} + \frac{1}{3}A_k \right) \right)$

 $\Delta := \cap A_k$

Azi adust a base 3 expossion alee the first two digats are either Oor 2.

A: admit a have 3 expension where the disits are only O or Z. Is the Contor set big or small? To construct & frem [3] le renove Asuer 1: 1 internal of logth 1/3 2 intervals of length 1/32 2° internes of length 1/23

"Total length renoved"

$$\frac{1}{3} + 2\frac{1}{3^2} + 2^2 + 2^3 +$$

$$\frac{1}{2} \sum_{k=1}^{\infty} \binom{2}{3}^{k} = \frac{1}{2} \frac{2}{1-2} = \frac{1}{2} \frac{2}{3-2} = \frac{1}{2}$$

Contor set is small, But the conter set is uncountable. It is large!

Lemmi If A is finite and
$$B = A$$
 than B is finite.
Pf. For converience, define $s_n = 21, ..., n3$.
We can assure WLOG that $A = s_n$ for some n .
The proof is obvious if $n = 1$.
Suppose the result is true for some $n \in \mathbb{N}$ and coasider
a set $B \leq s_{nn}$. If $B \leq s_n$ then B is finite by
the induction hypothesis. The set $B = S_n finite if $B = 2nr13$.
 $i = 2$ in $n_{r1}$$

Otherwise BASht & and Atter B.
We can construct a bijection
$$\phi: s_{k} \rightarrow BASh for some
k and extend if to a bijection $\phi: s_{k+} \rightarrow B$
by detunnes $\phi(k+1) = n+1$.
(or: If $B = A$ and B is infinite A is infinite.
(contapositive)
Lemma: If A is infinite and $A \subseteq N$ then
 A is counterably infinite.
PF: Let $A_{i} = A$.
Let a_{i} be the least element of A_{i} .
(since A is nonempty, and by the Well Ordering trunciple)$$

Let Az= A, \Za, Z. Observe that Az is infancte (ad have renerpty!). Let az be the herst eling of Az. Continuous inductively we construct a monotre Movensons sequence a Laz L. in A, That is, when we are insective mp N= A. We down that this map is a surjection. Indeed, suppose ce A. Observe that for any k, ak = k. In purticular, $a_c \ge c$. Since $c \in A = A_{c+1} \cup \frac{5}{2}a_{1,1}a_{2,2}..., a_c \xrightarrow{3}{3}$ we fuil that c & Zaw, ac 3 since and at Acti satisfies a DacZC. So c= ak for some k.