Last class:
$$(x_n)$$

 M is an eventual upper bound if there exists N
so if $n \ge N$, $x_n \le M$.
 $\lim_{n \ge \infty} \sup_{x_n} x_n = \inf_{x_n} \underbrace{\{M: M: m: n \in u. 6.\}}_{n \ge \infty}$
e.g. x_n is an encurrentian of $Q \land [O_0 i]$
 $\lim_{n \ge \infty} x_n = 1$
 $\lim_{n \ge \infty} x_n = 1$

Alterature Somewhatay (x,)

$$T_{N} = \sup \{2 \times N, \forall N + J = -\}$$

2 Sup Xn N7N

(TN) 15 monstere decrusing! $T_{NH} \leq T_N$ (it conveyes to a lamity possibly -co)

N20)

n 700

Hence Here exists N such that if
$$n \neq N$$
 then T_N
 $x_N \leq B$. Recall $T_N = \sup_{n \geq N} x_n$. Hence $T_N \leq B$.
Consequently $T_N \ll M + \varepsilon_n$ So $\lim_{n \geq N} x_n = \inf_{N} T_N \ll M + \varepsilon$.
This is true for all $\varepsilon > 0$. So $\lim_{n \rightarrow \infty} x_n \leq M = \lim_{n \rightarrow \infty} \sup_{n \rightarrow \infty} x_n$.

Hue are not to rear HW.

liminf: m is an eventual lover board on
$$(x_n)$$

if there exists N such that if non N
then $m \leq x_n$.
liminf $x_n = \begin{cases} \sup g m : m is an e.l.b.g \\ \sup inf x_n \\ N > inf x_n \\ N > inf x_n \\ liminf x_n \\$

Lemmi: limit
$$x_n \leq \lim \sup x_n$$
.
 $n > \infty$
 Pf : Let $m a d M$ be m eventual long and upper
based respectively for the sequence. Here there exists
 M such that $m \leq x_N \leq M$.
Here $\lim SM$. Recall $\lim \inf x_n = \sup \sum m : m : s = c.l.b \}$.
Here $\lim SM$. Recall $\lim \inf x_n \leq \lim M : m : s = c.l.b \}$.

Exercise: $\lim_{n \to \infty} x_n = L$ if $\lim_{n \to \infty} x_n = L = \lim_{n \to \infty} L$

Base p expansions Let pE Nyz = 2 nc/11: 1723 Dp= 20, 1, -, P-13 D "digits" Given $(a_k)_{k=1}^{\infty}$ $a_k \in \mathcal{O}_p$ we define $\mathcal{O}_{\bullet} a_1 a_2 a_3 \cdots (b_{ase p}) = \sum_{k=1}^{\infty} \frac{a_k}{p_k}$ $\sum_{k=1}^{\infty} \frac{a_k}{1-q}$ \mathbb{D}_{oes} this series conveye? $\sum_{k=1}^{\infty} \frac{1}{p_k} = \sum_{k=1}^{\infty} (\frac{1}{p_k})^k$

$$(|-q)(|+a+a^2+\cdots+a^N) = |-a^{N+1}$$

Lennai. The series
$$\sum_{k=1}^{\infty} \frac{1}{p^k}$$
 with each $a_k \in D_p$

Pf: Since each term is non negative we can employ
the comparison test.
Each
$$\frac{q_{k}}{r^{k}} \leq \frac{p-1}{p^{k}}$$
.
Observe $\sum_{k=1}^{\infty} \frac{p-1}{p^{k}} = (p-1) \sum_{k=1}^{\infty} (\frac{1}{p})^{k} = (p-1) \frac{1}{p}$

$$= (p-1) \int_{p-1}^{1}$$
$$= 1.$$

Hence $O \leq \sum_{k=1}^{\infty} \frac{a_k}{p^k} \leq 1.$ If

0.5 0.499---

Prap: Each XE [9] admits a buse p expunsion. Pf: The case x= 0 is trivial. Suppose OLKGI. Let a = mux Zde INzo: d<x Z and observe that a, e Dp.

Yn:= q1+ az + an sutisfies Such that

Yu < x < Yu + j

By the squere therew, X-IN-SO or YN-SX. Hence $\sum_{k=1}^{\infty} \frac{a_k}{p_k} > \times$.