Last class:
$$
(x_n)
$$

\nM is an eventually upper bound if there exists N

\nso if $n \ge N$, $x_1 \le M$.

\nlim sup $x_1 = M + \{M : M : 3 \text{ an each.}\}$

\ne.g. $x_1 = M + \{M : M : 3 \text{ an each.}\}$

\nand $x_2 = M + \{M : M : 3 \text{ an each.}\}$

\nand $x_3 = M + \{M : M : 3 \text{ an each.}\}$

\nand $x_4 = M + \{M : M : 3 \text{ an each.}\}$

\nand $x_5 = M + \{M : M : 3 \text{ an each.}\}$

Alternature Sommulastras $(x,)$

$$
T_{\nu}
$$
 = 540 $\frac{2}{2} \times \omega_{\nu}$ $\frac{1}{2} \omega_{\text{H}} = \frac{2}{3}$

 \approx $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

([1) 15 monstere decreves 10) T_{wH} \leq T_{w} $(i+$ converse to a lanity possibly
-co)

$$
\frac{1}{\lim_{n\to\infty}} x_n = \lim_{N\to\infty} T_N = \lim_{N\to\infty} \frac{54P}{N^{2N}}
$$

\n
$$
= \lim_{N\to\infty} T_N = \lim_{N\to\infty} \frac{54P}{N^{2N}}
$$

\n
$$
= \lim_{N\to\infty} \frac{1}{N} = \lim_{N\to\infty} \frac{54P}{N^{2N}}
$$

Here there exists
$$
N
$$
 such that $n^2 \ge N$ then \overline{w}

\n $X_N \le B$. Recall $T_N = \sup_{N \ge N} X_N$. Hence $T_N \le B$.

\nConsequently $T_N \le M + \varepsilon_n$ $S_m = \lim_{n \to \infty} X_n = \inf_{N} T_N \le M + \varepsilon$.

\nThus, is true for all $\varepsilon > 0$. So $\lim_{n \to \infty} X_n \le M = \lim_{n \to \infty} S_n$.

\nThe same inequality, when $\lim_{N \to \infty} X_N = +\infty$ is always all

these case to κ on $H(U)$,

$$
lim inf:\n $lim inf$ \n lim \n lim
$$

Lemma: Im of
$$
x_n \leq \ln n \Rightarrow \varphi x_n
$$

\n95: Let $m \sim d M$ be an external long and upper bound respectively for the sequence. Hence there exists

\n10 such that $m \leq x_N \leq M$.

\n11 Here $m \leq M$. Recall, $\ln m \leq x_N \leq M$.

\n12. The result is $m \leq x_N \leq M$.

\n13. The result is $m \leq x_N \leq M$.

\n14. The result is $m \leq m \leq m$ for all $m \leq m \leq m$.

 $\lim_{n \to \infty} x_n = L$ $\lim_{n \to \infty} \lim_{n \to \infty} x_n = L = \lim_{n \to \infty} x_n + x_n$ Execise.

$$
(LER or L=0 or L=-0)
$$

Buse p exponsions Let $p \in N_{z_2} = \{$ ac/l); $a z z_3$ $20p = 50, 1 - y p-13$ $20y + 3y = 12$ Given $(a_k)_{k=1}^{\infty}$ $a_k \in D_p$ we define
 $0. a_1 a_2 a_3 \cdots (b_n e_p) = \sum_{k=1}^{\infty} \frac{a_k}{p^k}$ $\sum_{k=1}^{\infty} \frac{1}{p^k} = \frac{a_1}{1-q}$

Does thus series concern? $\sum_{k=1}^{\infty} \frac{1}{p^k} = \sum_{k=1}^{\infty} {1 \choose k}^k$

$$
(-a) \left(1+a+a^2+...+a^{\prime\prime}\right) = 1-a^{\prime\prime\prime\prime}
$$

Lennai. The series
$$
\sum_{k=1}^{\infty} \frac{a_k}{k}
$$
 with end $a_k \in \mathbb{D}_p$

$$
Comveses
$$
 be a number ln $[0, 1]$.

Pf: Since each term is nonnegative, we can employ
\nthe comparison test.
\nEach
$$
\frac{a_k}{p^k} \le \frac{p-1}{p^k}
$$
.
\nObserve $\sum_{k=1}^{\infty} \frac{p-1}{p^k} = (p-1) \sum_{k=1}^{\infty} (\frac{1}{p})^k = (p-1) \frac{p}{1-1/p}$

$$
= (p-1) \frac{1}{p-1}
$$

Here $0\le \sum_{k=1}^{\infty} \frac{a_k}{p^k} \le 1$.

0.5 0.499 --

Prep: Each x E [9] I adm ts a buse p expunsion. $PF:$ The case $x=0$ is fromal. Suppose $0 < x \le 1$. Let $a_i = max \{ d \in N_{z,o} : \frac{d}{p} < x \}$ and obsent that a, c Dp.

such that $y_0 := \frac{a_1}{\rho} + \frac{a_2}{\rho^2} + \frac{a_3}{\rho^2}$ satisfies

 $Y_{\mu} < x \leq Y_{\mu} + \frac{1}{\rho}$

 $N_{\text{o}} + \alpha e$ that $|x-y_n| \leq \frac{1}{p^n}$.

By the squeeze themen, x- in so or $Y_{n}\rightarrow X_{0}$ Hence $\sum_{k=1}^{\infty} \frac{a_k}{p^k} > x.$