How is R dollerent form Q?

Completeness:

Axiom of Completenoss:

Evoy renempty subsect of IR That is bounded above admits a supremum.

If $A \subseteq R$ we say b is a supremy of A if

- (for all a & A, a & b).
- 2) If b' is any upper bond for A, b \(b \) \(\) (leastness)

Manifootations:

1) (audy criterian (Early sequences convese)
2) Bolzamo - Weierstrass (bonded sequences)
3) Montane (onuerene Thm (notonoden handed sequences)
4) Nested interval property
(any sequence of rested closed intervals
has non empty intersection)

Extended Real Numbers:

Rulos

R=RU2-00,003 1) 00 7 x for all xER

2) -00 EX for all XEIR

The $A \subseteq \mathbb{R}$ and is not bounded above sup $A = \infty$,

sup $\phi = -\infty$.

Recall $\lim_{n\to\infty} x_n = L$ if for all $\in 70$ there exists $N \in \mathbb{N}$ or such that for all $n \ni N$ $|L-x_n| < E$.

Limits need not exist.

$$\chi_{N} = V$$

$$X_n = (-1)^n$$

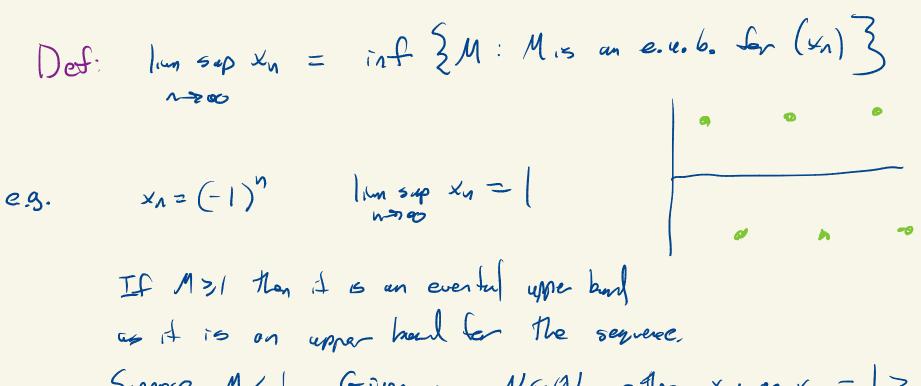
$$X_n = V_n$$
 where $(V_n) \approx an$ enumeration of $Q \cap [0,1]$

We have, however, two related objects,

limit infishm (limint)

limit suprems (lim sup)

That always exist. lun sup Let (4n) be a sequence. We say MER 13 an eventual upper boul for the there exists NGIN such that for all $x_n \leq M$.



Suppose M<1. Given any NGN, eater XN or XH = 1>M, So M is not an e.u.b. So the sot of e.u.b 5 for the sequere is [1500] which has I as on inf.

 $X_{n} = \frac{1}{n}$ $\lim_{n \to \infty} \int_{0}^{\infty} dx = 0$

If M&O it is not an enulo,

Suppose M>O. Prok NEW with TXM.

Then if n=N, I & J & M. So Mis

an e.u.b. So He set of e.u.b's is (0,00].

So lungup I = inf (0,00] = 0.

lim sup 1 = _