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Integration of Step Functions

A partition P of [a, b] is a collection {xk}nk=0 such that

a = x0 < x1 < ⋯ < xn−1 < xn = b.

More succinctly, a partition is a �nite subset of [a, b] containing a and b. It is helpful to
think of a partition as dividing [a, b] into intervals Ik = [xk−1, xk], each of which having
length dxk = xk − xk−1. A partition P ′ is said to be �ner than P if P ′ ⊇ P . Given any two
partitions P and P ′, the common re�nement of the partitions is P ∪ P ′.
A step function is a function g ∶ [a, b] → R such that there exists a partition P for which
g is constant on each open interval (xk−1, xk) of the partition. Any partition that satis�es
this condition for g will be called a step partition (for g). Clearly every re�nement of a step
partition for g is also a step partition for g. We use the notation Step[a, b] for the set of all
step functions on [a, b].
�inking of integration as measuring signed area under the graph of function, it is relatively
straightforward to integrate step functions. If g is a step function with step partition P , and
if g(x) = gk on (xk−1, xk), we de�ne

∫
b

a
g =

n

∑
k=1

gkdxk .

One needs to verify, however, that this de�nition of integral does not depend on the choice
of step partition. �at is, if P and P ′ are two step partitions for g, it must hold that

n

∑
k=1

gkdxk =
n′

∑
k=1

g′kdx
′
k . (1)

By reducing to a common re�nement, it is enough to show that (1) holds when P ′ is a re-
�nement of P .
Exercise 1: Establish (1) when P ′ is a re�nement of P . First assume that P ′ = P ∪ {x′}, and
then deduce the result for a general re�nement by induction.

Properties of the Integral

Notice that the set of step functions on [a, b] is a vector subspace of B[a, b]. Indeed, if f
and g are step functions with step partitions P f and Pg , let P be the common re�nement
(so P is a step partition for f and for g). �en on each interval (xk−1, xk) we have f (x) = fk
and g(x) = gk and

( f + g)(x) = fk + gk .
Hence P is a step partition for f + g. Similarly, if f is step function, then so is c f for any
c ∈ R.
One of themost important properties of the integral is that themap taking f to ∫

b
a f is linear.
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�eorem 1: Let f and g be step functions on [a, b]. �en

∫
b

a
( f + g) = ∫

b

a
f + ∫

b

a
g ,

and for any α ∈ R,

∫
b

a
α f = α∫

b

a
f .

Exercise 2: Prove�eorem 1 directly from the de�nition of the integral of step functions.

You may have wondered when you were �rst introduced to integration why it was de�ned
in terms of signed area under the graph of a function. One mathematical motivation is that
it ensures that the integral is linear.

Another elementary property of the integral is its montonicity (which also relies on the
signed area interpretation of the integral).

�eorem 2: Let f and g be step functions on [a, b] such that f (x) ≥ g(x) for every x ∈
[a, b]. (�at is, f ≥ g.) �en

∫
b

a
f ≥ ∫

b

a
g .

Proof. Let P be a step partition for f and g. �en for each k we have fk ≥ gk and hence

∫
b

a
f =

n

∑
k=1

fkdxk ≥
n

∑
k=1

gkdxk = ∫
b

a
g .

Suppose f is a step function. Any step partition for f is also a step partition for ∣ f ∣ and hence
∣ f ∣ is also a step function. Moreover, for any x ∈ [a, b] we have

− ∣ f (x)∣ ≤ f (x) ≤ ∣ f (x)∣

and hence by�eorem 1 and�eorem 2 we have

−∫
b

a
∣ f ∣ ≤ ∫

b

a
f ≤ ∫

b

a
∣ f ∣ .

We have therefore established the following estimate, which can be thought of as a relation-
ship between the signed area ∫

b
a f and the unsigned area ∫

b
a ∣ f ∣.

�eorem 3: Let f be a step function on [a, b]. �en

∣∫
b

a
f ∣ ≤ ∫

b

a
∣ f ∣ .

One �nal property of the integral is that it can be computed by breaking the domain up into
pieces and computing the integral on each piece.
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�eorem 4: Suppose f is a step function on [a, b] and suppose a ≤ c ≤ b. �en

∫
b

a
f = ∫

c

a
f + ∫

b

c
f .

Proof. Let P be any step partition for f . Without loss of generality, we can assume that
xN = c for some N (otherwise, we can consider a �ner partition by adding the point c).
�en

∫
b

a
f =

n

∑
k=1

fkdxk =
N

∑
k=1

fkdxk +
n

∑
k=N+1

fkdxk = ∫
c

a
f + ∫

b

c
f .

Riemann Integrable Functions

We would like to extend the de�nition of the integral to a broader class of functions than
step functions. Given a function f ∈ B[a, b], we would like to de�ne an integral for f that
preserves the properties of�eorems 1, 2, 3 and 4 of the integral for step functions. Although
we will not be able to do this for all functions in B[a, b], we will be able to do so for a large
class of functions.

Given a function f ∈ B[a, b], and step functions g and G with g ≤ f ≤ G, we would want to
have

∫
b

a
g ≤ ∫

b

a
f ≤ ∫

b

a
G .

We de�ne the upper Riemann integral of f to be

∫
b

a
f = inf

G∈Step[a,b]
G≥ f

∫
b

a
G

and the lower Reimann integral of f to be

∫
b

a
f = sup

g∈Step[a,b]
g≤ f

∫
b

a
g .

For any f ∈ B[a, b], it is an immediate consequence of the de�nition that

∫
b

a
f ≤ ∫

b

a
f .
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Moreover, if f is a step function, then

∫
b

a
f = sup

g∈Step[a,b]
g≤ f

∫
b

a
g

≥ ∫
b

a
f

≥ inf
G∈Step[a,b]

G≥ f

∫
b

a
G

= ∫
b

a
f .

Hence if f is a step function, then

∫
b

a
f = ∫

b

a
f = ∫

b

a
f .

�e class of function for which we have equality of the upper and lower Riemann integrals is
known as the set of Riemann integrable functions,R[a, b]. If f ∈ R[a, b], then we de�ne

∫
b

a
f = ∫

b

a
f (= ∫

b

a
f ) .

We have just shown therefore that Step[a, b] ⊆ R[a, b], and that the Riemann integral of a
step function agrees with the integral we have already de�ned for step functions.

It is perhaps surprising that not every function in B[a, b] is Riemann integrable. An example
of such a function is given by χQ.

Exercise 3: Prove that ∫
1
0 χQ = 1 but ∫

1
0 χQ = 0.

Upper and Lower Riemann Sums

Sometimes it is convenient to describe the upper and lower Riemann integrals of a function
in terms of limits of certain near optimal step functions.

Let f ∈ B[a, b] and let P be a partition of [a, b]. Given this partition, we de�ne Mk =
supx∈[xk−1 ,xk] f (x) andmk = inf x∈[xk−1 ,xk] f (x). We then associate with f andP step functions
f P and f P that are equal toMk andmk respectively on (xk−1, xk) and are equal to f (xk) for
each k. �e upper Riemann sum (for the function f and partition P) is

U( f ,P) = ∫
b

a
f P =

n

∑
k=1
Mkdxk

and the lower Riemann sum

L( f ,P) = ∫
b

a
f
P
=

n

∑
k=1
mkdxk .
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Exercise 4: Given a function f ∈ B[a, b] and a step function G ≥ f , show that for any
є > 0 there exists a partition P ′ such that є + ∫

b
a G ≥ U( f ,P ′) Prove a similar result for step

functions g ≤ f . Conclude that

∫
b

a
f = inf

P
U( f ,P)

and

∫
b

a
f = sup

P
L( f ,P).

Characterization of Riemann Integrable Functions

Given the de�nition of Riemann integrability, it is not necessarily easy to determine whether
a given function is Riemann integrable. On the face of things, onewould have to compute the
upper and lower Riemann integrals, and then verify that they are the same. �e following
result helps identify Riemann integrable functions without having to compute upper and
lower Riemann integrals.

Proposition 5: Let f ∈ B[a, b]. �en the following are equivalent.

1. f ∈ R[a, b].

2. For any є > 0 there exist step functions g and G with g ≤ f ≤ G and such that

∫
b

a
(G − g) < є.

3. For any є > 0 there exists a partition P such that

U( f ,P) < L( f ,P) + є.

Proof. Suppose f is Riemann integrable. Let G be a step function such that G ≥ f and

∫
b

a
G < ∫

b

a
f + є/2.

Let g be a step function such that g ≤ f and

∫
b

a
g > ∫

b

a
f − є/2.

�en

∫
b

a
G < ∫

b

a
f + є/2 = ∫

b

a
f + є/2 < ∫

b

a
g + є.

So

∫
b

a
(G − g) < є.
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Conversely, suppose f is not Riemann integrable. Let є = ∫
b
a f − ∫

b
a f . �en for any step

functions g and G with g ≤ f ≤ G we have

∫
b

a
g ≤ ∫

b

a
f = ∫

b

a
f − є ≤ ∫

b

a
G − є.

Hence

∫
b

a
(G − g) ≥ є

for all step functions G and g with g ≤ f ≤ G.
�e equivalence of statements 2 and 3 is le� for the reader.

Exercise 5: Prove the equivalence of statements 2 and 3 in Proposition 5.

One important application of Proposition 5 is that it allows for an easy proof that C[a, b] ⊆
R[a, b].

�eorem 6: C[a, b] ⊆ R[a, b].

Proof. Let f ∈ C[a, b]. Let є > 0. Since f is uniformly continuous, there exists a δ > 0 such
that if ∣x − z∣ < δ, then ∣ f (x) − f (z)∣ < є/(b − a). Pick N ∈ N such that (b − a)/N < δ, and
let P be the partition {a + k(b − a)/N ∶ 0 ≤ k ≤ N}. For each k, we de�ne

Gk = sup
x∈Ik

f (x) gk = inf
x∈Ik

f (x).

Note that 0 ≤ Gk − gk ≤ є/(b − a) for each k.
Let G be the step function that equals Gk on the interior of Ik and that equals f at each xk,
and de�ne g similarly. �en g ≤ f ≤ G on [a, b] and moreover

∫
b

a
G − g =

N

∑
k=1

(Gk − gk)
b − a
N

< є
b − a

b − a
N

N = є.

So Proposition 5 implies f is Riemann integrable.

Properties of the Integral

We would like to extend�eorems 1, 2, 3 and 4 to all ofR[a, b]. �e extension of �eorem
2 is immediate from the de�nition.

�eorem 7: Suppose f , g ∈ R[a, b] with f ≤ g. �en

∫
b

a
f ≤ ∫

b

a
g .
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Proof. For any step function H with g ≤ H we have f ≤ H as well and hence

∫
b

a
f = ∫

b

a
f = inf

H∈Step[a,b]
H≥ f

∫
b

a
H ≤ inf

H∈Step[a,b]
H≥g

∫
b

a
H = ∫

b

a
g = ∫

b

a
g .

To establish the linearity of the integral we need to work a little harder.

�eorem 8: Suppose f , g ∈ R[a, b]. �en f + g ∈ R[a, b] and

∫
b

a
( f + g) = ∫

b

a
f + ∫

b

a
g . (2)

Also, for every α ∈ R, α f ∈ R[a, b] and

∫
b

a
α f = α∫

b

a
f . (3)

Proof. Let f , g ∈ R. For each n ∈ N, let h f ,n and H f ,n be step functions with h f ,n ≤ f ≤ H f ,n
and with

∫
b

a
f − 1

n
≤ ∫

b

a
h f ,n ≤ ∫

b

a
f ≤ ∫

b

a
H f ,n ≤ ∫

b

a
f + 1

n
.

�e existence of these step functions follow from the Riemann integrability of f . Let hg ,n
and Hg ,n be a similar sequence of step functions for g.

Notice that for each n, H f ,n +Hg ,n ≥ f + g. Hence for each n,

∫
b

a
( f + g) ≤ ∫

b

a
(H f ,n +Hg ,n) = ∫

b

a
H f ,n + ∫

b

a
Hg ,n .

Taking the limit in n we conclude

∫
b

a
f + g ≤ ∫

b

a
f + ∫

b

a
g .

A similar argument with the sequences (h f ,n) and (h f ,n) yields the inequality

∫
b

a
f + ∫

b

a
g ≤ ∫

b

a
f + g .

However, it is always true that ∫
b
a ( f + g) ≥ ∫

b
a ( f + g), so we conclude that

∫
b

a
( f + g) = ∫

b

a
( f + g) = ∫

b

a
f + ∫

b

a
g .

Hence ( f + g) is integrable and equation (2) holds.
�e proof that α f is integrable and that (3) holds is le� as an exercise.
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Exercise 6: Suppose f ∈ R[a, b] and α ∈ R. Show that α f ∈ R[a, b] and ∫
b
a α f = α ∫

b
a f .

In order to prove the extension of �eorem 3 to all of R[a, b], we need to show �rst that if
f ∈ R[a, b], then ∣ f ∣ ∈ R[a, b]. �is is perhaps most easily done by �rst showing that the
positive part of f is Riemann integrable.

Given a function f ∈ B[a, b], we de�ne f ∨ 0 by

( f ∨ 0)(x) =max(x , 0).

Notice that f ≤ f ∨ 0, and if if f , g ∈ B[a, b] satisfy g ≤ f , then g ∨ 0 ≤ f ∨ 0. It follows that

f + g ≤ f ∨ 0 + g ∨ 0

and hence
( f + g) ∨ 0 ≤ ( f ∨ 0 + g ∨ 0) ∨ 0 = f ∨ 0 + g ∨ 0.

With these facts in hand, we can now show the positive part of f is Riemann integrable
whenver f is.

Proposition 9: Suppose f ∈ R[a, b]. �en f ∨ 0 ∈ R[a, b].

Proof. Let f ∈ R[a, b] and let є > 0 Let g and G be step functions such that g ≤ f ≤ G and
such that that

∫
b

a
(G − g) < є.

Now notice that G ∨ 0 and g ∨ 0 are step functions and

g ∨ 0 ≤ f ∨ 0 ≤ G ∨ 0.

Moreover,

G ∨ 0 = ((G − g) + g) ∨ 0 ≤ (G − g) ∨ 0 + g ∨ 0 = (G − g) + (g ∨ 0).

Hence
G ∨ 0 − g ∨ 0 ≤ G − g

and therefore

∫
b

a
G ∨ 0 − g ∨ 0 ≤ ∫

b

a
G − g < є.

Hence by Proposition 5, f ∨ 0 is Riemann integrable.

Corollary 10: If f ∈ R[a, b], then ∣ f ∣ ∈ R[a, b] and

∫
b

a
f ≤ ∫

b

a
∣ f ∣ .
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Proof. Notice that

f = ( f ∨ 0) − (− f ∨ 0) and ∣ f ∣ = ( f ∨ 0) + (− f ∨ 0).

Since ∣ f ∣ is a sum of Riemann integrable functions, it is Riemann integrable. Moreover,

∫
b

a
f = ∫

b

a
( f ∨ 0) − ∫

b

a
(− f ∨ 0) ≤ ∫

b

a
( f ∨ 0) + ∫

b

a
(− f ∨ 0) = ∫

b

a
∣ f ∣ .

�e �nal property to extend is the domain decomposition of the integral.

Proposition 11: Let f ∈ B[a, b] and let c ∈ [a, b]. �en f ∈ R[a, b] if and only if f ∈ R[a, c]
and f ∈ R[c, b].

Proof. Suppose f ∈ R[a, b]. Let є > 0 and let G and g be step functions such that g ≤ f ≤ G
and such that ∫

b
a (G − g) < є. �e restrictions of G and g to [a, c] also satisfy g ≤ f ≤ G.

Moreover, since G − g ≥ 0,

∫
c

a
(G − g) ≤ ∫

b

a
(G − g) < є.

So the restriction of f to [a, c] is Riemann integrable, and a similar argument shows that the
restriction of f to [c, b] is Riemann integrable.
Conversely, suppose f ∈ R[a, c] and f ∈ R[c, b]. For notational convenience, let f1 and f2
be the restrictions of f to [a, c] and [c, b] respectively. Let є > 0 and let g1 and G1 be step
functions on [a, c] such that g1 ≤ f1 ≤ G1 and

∫
c

a
(G1 − g1) < є/2.

Similarly, let g2 and G2 be step functions on [c, b] such that g2 ≤ f2 ≤ G2 and

∫
c

a
(G2 − g2) < є/2.

Let g be the step function on [a, b] that is equal to g1 on [a, c), equal to g2 on (c, b] and
equal to f (c) at c. �en g ≤ f and

∫
b

a
g = ∫

c

a
g + ∫

b

c
g = ∫

c

a
g1 + ∫

b

c
g2.

Let G be a similarly de�ned step function with respect to G1 and G2, so G ≥ f and

∫
b

a
G = ∫

c

a
G1 + ∫

b

c
G2.

�en g ≤ f ≤ G on [a, b] and

∫
b

a
(G − g) = ∫

c

a
(G1 − g1) + ∫

b

c
(G2 − g2) < є/2 + є/2 = є.

Hence f is Riemann integrable on [a, b].
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With this last result in hand, it is not di�cult to establish the extension of �eorem 4.

�eorem 12: Let f ∈ R[a, b]. �en for any c ∈ [a, b] we have

∫
b

a
f = ∫

c

a
f + ∫

b

c
f .

Exercise 7: Prove�eorem 12.
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