Name:

1. Find all critical points of

$$f(x,y) = 2x^2 + y^4 - 4xy$$

$$f_{\chi} = 4 \times -4 y$$
 $f_{\chi} = 0 \Rightarrow x = y$
 $f_{\gamma} = 4 y^3 - 4 x$ $f_{\gamma} = 0 \Rightarrow 4 y^3 - 4 y = 0$
 $\Rightarrow y = -1,0,1$

2. You should have found that (1, 1) is a critical point in the previous problem. Classify it as a local minimum, local maximum or saddle point.

$$f_{xx} = 4$$
 $f_{xy} = -4$ $f_{yy} = 12y^2$
 $a+(b)$ $b=|4-4| = 48-16 > 0 => local non/max
(or an bigumes)$

Suppose you wish to maximize $f(x, y) = xe^{-xy}$ subject to the constraint $x^2 + y^2 = 1$. Set up a system of three equations to solve for three variables to find the maximum value. DO NOT ATTEMPT TO SOLVE THE EQUATIONS!

$$f_{x} = e^{-xy} - xye^{-xy}$$

$$= (1-xy)e^{-xy}$$

$$g(x,y) = x^2 + y^2$$

$$g(x,y) = x^2 + y^2$$

equations:

 $f_{y} = -x^{2}e^{-x^{2}}$

$$x^{2} + y^{2} = 1$$
 $(1 - xy)e^{-xy} = 2\lambda x$
 $-x^{2}e^{-xy} = 2\lambda y$

(constraint)

For unknowns (x, y,)