

Cor l curl $\vec{V} \vec{V} \times \vec{V}$
How to compute?

$$
\begin{array}{r}
\left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
p & Q & R
\end{array}\right|=\left(R_{y}-Q_{z}\right) \hat{\imath}-\left(R_{x}-P_{z}\right) \hat{\jmath} \\
+\left(Q_{x}-P_{y}\right) \hat{k}
\end{array}
$$

$$
-\frac{\partial P}{\partial y}+\frac{\partial Q}{\partial x}
$$

$$
\vec{V}=\langle P, Q\rangle
$$

$$
\begin{aligned}
& \vec{V}=\left\langle x z, x y^{2} z,-e^{2 y}\right\rangle \\
& \vec{\nabla} \times \vec{V}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial_{y} & \alpha_{z} \\
x z & x y^{2} z & -c^{2 y}
\end{array}\right|=\left(-2 e^{2 y}-x y^{2}\right) \hat{\imath}-(-x) \hat{\jmath} \\
& +\left(y^{2} z\right) \hat{k}
\end{aligned}
$$

Two ideates: f f

$$
\vec{\nabla} \times(\vec{\nabla} f)=\overrightarrow{0}
$$

$$
\begin{aligned}
& \vec{\nabla} f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
& \vec{\nabla} \times \vec{\nabla} f=\left|\begin{array}{lll}
\hat{c} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
f_{x} & f_{y} & f_{z}
\end{array}\right|=\left(f_{z y}-f_{y z}\right) \hat{c} \\
& \quad-\left(f_{z x}-f_{x z}\right) \hat{\jmath} \\
& \quad\left(f_{y x}-f_{x y}\right) \hat{k}=\overrightarrow{0}
\end{aligned}
$$

$$
\vec{W}=\vec{\nabla} f\left("_{a}\right. \text { potential" }
$$

If $\vec{\nabla} \times \vec{W} \neq 0$ Then $\vec{\omega}$ is wot conservative.
Conversely if $\vec{\nabla} \times \vec{\omega}=0$ and the domain of $\vec{\omega}$ is simply connected (no hole) then \vec{V} is corservatue (boxes and balls ore always of)

$$
\vec{\nabla} \cdot\left(\sum_{\partial P}^{(\stackrel{\rightharpoonup}{\nabla} \times \vec{V})} \text {) } \partial Q \quad 0 \quad \partial^{2} P \quad \partial^{2} Q \quad \partial^{2} R\right.
$$

If \vec{W} satisfies $\vec{\nabla} \cdot \vec{W}=0$ then on bores or bulls Here exists a vector field \vec{V} whee $\vec{W}=\vec{\nabla} \times \vec{V}$

$$
\vec{\nabla} \cdot(\vec{\nabla} f)=\Delta_{\uparrow} f=\partial_{x}^{2} f+\partial_{y}^{2} f+\partial_{z}^{2} f
$$

Lapacion
$\Delta f=0$ is rue and spectial ("harmaric")

distence wand is 2ma

$$
\frac{1}{(2 \pi a)^{2}} \oint_{C} \vec{V} \cdot d \vec{r}=\frac{1}{\begin{array}{c}
\text { time to go } \\
\text { arand the crcle }
\end{array}} \text { rotatiens per time }
$$

$$
\left.\begin{array}{rl}
\frac{1}{(2 \pi a)^{2}} \oint_{C} \vec{V} \cdot d \vec{r} & =\frac{1}{(2 \pi a)^{2}} \iint_{R}-P_{y}+Q_{x} d x d y \\
& =\frac{1}{4 \pi}\left[\frac{1}{\pi a^{2}} \iint_{\mathbb{R}}\left(-P_{y}+Q_{x}\right) d x d y\right] \\
\operatorname{area}(\mathbb{R})=\pi a^{2}
\end{array}\right]
$$

average value of $\left(-P_{y}+Q_{x}\right)$
over the circle.
$\frac{1}{4 \pi}\left(-P_{y}+Q_{x}\right)$ is the angulie veloaly in cyclos/tine over an infinitesmally sull circle.
${ }^{\ominus} \uparrow$
$\frac{1}{2}\left(-P_{y}+Q_{x}\right)$ is ongelar velocity in radicas) tare over an infuritesmaly suall circle "circulation"
corl \vec{V} has a job:
pack a locatian p
pick a unit nor na vector at p, cull in \vec{n}

$\frac{1}{2}(\vec{\nabla} \times \vec{V}) \cdot \vec{n}$ is the circulation $\left(\mathrm{rad} / \mathrm{tm}_{\infty}\right)$ of the flied in the place perpendicular to \vec{n} as seen from \vec{s}.

$$
\vec{V}=e^{-x^{2}} \hat{\jmath}
$$

$$
\begin{aligned}
& \vec{\nabla} \times \vec{V}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
0 & e^{-x^{2}} & 0
\end{array}\right|=0 \hat{\imath}+0 \hat{\jmath}-2 x e^{-x^{2}} \hat{k} \\
&=-2 x e^{-x^{2}} \hat{k} \\
&(\vec{\nabla} \times \vec{V}), \hat{k}=-2 x e^{-x^{2}}
\end{aligned}
$$

