Conservative Veetor Fields
F-> vector Sield
We say that Fis conservative if there exists a function f
Such that $\vec{F} = \vec{\nabla} \vec{F}$
in which case we call f a potential of F.
Suppose $\vec{F} = \langle P, Q \rangle$ is conservative. $P = \partial_x f$ $Q = \partial_y f$
Then $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. $\partial_y P = \partial_y \partial_x f$
$=\partial_{x}\partial_{y}f$
$\vec{F} = \langle \chi^2, \chi_{\gamma} \rangle$ $P Q$ $= \partial_{\gamma} Q$

 $\frac{\partial P}{\partial y} = 0$ $\frac{\partial Q}{\partial y} = y$ O = y generally => F is not conservative Most vector fields are not conservative. Many fundamental force fields in physics or conservative (É electric Sield, G growith Fourd Sield) If Fis conservative with potential f $\left(\overrightarrow{F},d\overrightarrow{r}=f(z)-f(p)\right)$

3 properties of construction vector fields a) JF. de depends only on the endpoints of C and nothing also about C b) $\oint \vec{F} \cdot d\vec{r} = 0$ for all loops C $\vec{F} = \langle P, Q, R \rangle$ a) "Mexed purtual" property $P_y = Q_{x_j}$, $P_z = R_{x_j}$, $Q_z = R_y$ Question: If a vector field ratisfies a) erb) onc) is it conservative?

Infact b) => a) => vector field is conservative (see test) How about c)? F= LP, Q> If we know $P_y = Q_x$ can we conclude \overline{F} 13 consecutive an indeed can we find a potential? $\vec{F}(x_{iq}) = \langle \gamma^2 - 2x_j, 2x_q \rangle$ $P_{y} = 2\gamma$ $Q_{x} = 2\gamma$ $P_{y} = Q_{\chi}$

 $\vec{F} = \vec{\nabla}f = \langle \partial_x f, \partial_y f \rangle$ Cun we find a putertail? $\partial_x f = \gamma^2 - Z_X$ $\partial_y f = 2 \times y$ If $\partial_x f = y^2 - 2x$ then $f(x,y) = xy^2 - x^2 + h(y)$ $\partial_x f = \gamma^2 - 2\chi + O$ $f(x,y) = xy^2 - x^2 + h(y)$ have $\partial_{y} f = 2 x_{y} + 0 + h'(y) = 0$ f(x,y)= xy2 - x2 2xF= y2-2x dyf= 2 xy

$\vec{F} = \langle 3+2xy, x^2-3y^2 \rangle$ Is there a potential? P Q	•
$\partial_{\gamma} P = Z_{\chi}$ $Z_{\chi} = Z_{\chi}$, so myber it is consolide. $\partial_{\chi} Q = Z_{\chi}$	•
$\partial_{x} f = 3 + 2xy$ $\partial_{y} f = x^{2} - 3y^{2}$	•
$ \Rightarrow \partial_x f = 3 + 2xy \Rightarrow f(x,y) = 3x + x^2y + h(y) $	•
Wat $\partial_{y} f = x^{2} - 3y^{2}$ Have $\partial_{y} f = 0 + x^{2} + h'(y) = -3y^{2}$ $h(y) = -3y^{2}$ $h(y) = -y^{3} + c$	•
$f(x,y) = 3x + x^2 y - y^3$	•

It is almost true that if Py = Qx they F is consonutive F= <P,Q> x2+72 Q $\frac{X}{X^2+y^2}$ $P = -\frac{7}{2}$ ×,47 P.In L-1,x) · (x,y7=07 -7