\vec{E} electror field
Partirle with cluse q experiecos a force

fane N

$$
\begin{aligned}
& {[q]=C} \\
& {[\vec{E}] \quad[q \vec{E}]=N} \\
& {[\varepsilon][\vec{E}]=N} \\
& {[\vec{E}]=N / C} \\
& =\frac{k_{g} m}{s^{2}} \frac{1}{C} \\
& =\frac{\mathrm{kg} \mathrm{~m}^{2}}{\mathrm{~s}^{2}} \frac{1}{c} \frac{1}{m}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{J}{C} \frac{1}{m} \\
& =\sqrt{/ m} \text { volt }
\end{aligned}
$$

at the origin
a stationary point partrile with electric chine Q generates an electric fired

$$
\vec{E}=Q \frac{\vec{x}}{|\vec{x}|^{3}}=Q \frac{\stackrel{\rightharpoonup}{r}}{|\stackrel{\rightharpoonup}{r}|^{3}}
$$

\downarrow

$$
=\frac{Q}{|\vec{x}|^{2}} \frac{\vec{x}}{|\vec{x}|}
$$

$$
\begin{aligned}
& 3 C \quad E=\langle-1,2,3\rangle \\
& \vec{F}=3 \cdot\langle-1,2,3\rangle=\langle-3,6,9\rangle \mathrm{N}
\end{aligned}
$$

$\vec{E}=\frac{Q}{|\vec{x}|^{\frac{1}{x}}} \frac{\vec{x}}{|\vec{x}|} \leftharpoonup$ is a conservative vector field this is a gradient

$$
\begin{aligned}
& f(x, y, z)=-Q\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2} \\
& \frac{\partial f}{\partial x}=-Q\left(-\frac{1}{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} 2 x
\end{aligned}
$$

$$
\begin{aligned}
& =Q\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} x \\
\frac{\partial f}{\partial y} & =Q\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} y \quad \vec{x}=\langle x, y, z\rangle \\
\frac{\partial f}{\partial z} & =Q\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} z \quad \vec{\nabla}(x, y, z) \\
\vec{\nabla} f & =Q\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\langle x, y, z\rangle \\
& =Q\left(x^{2}+y^{2}, z^{2}\right)^{-3 / 2} \vec{x} \\
& =Q\left(\|\vec{x}\|^{2}\right)^{-3 / 2} \vec{x} \\
& =Q\|\vec{x}\|^{-3} \vec{x} \\
& =Q \vec{x} \\
\|\vec{x}\|^{3} & =\frac{Q}{\|\vec{x}\|^{2}} \frac{\vec{x}}{\|\vec{x}\|}=\vec{E}!
\end{aligned}
$$

$$
\vec{V}=\langle a(x, 4), b(x, y)\rangle
$$

If $\vec{V}=\vec{\nabla} f$ then $\vec{V}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle$

$$
\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y}
$$

$\vec{V}=\langle y,-3 x\rangle \quad$ is it cosecredive?
No: $\frac{\partial}{\partial y} y$ us $\frac{\partial}{\partial x}(-3 x)$
1 vs $-3 \quad \mid \neq-3$ so \vec{V} is ant conseralue.

$$
\begin{aligned}
& \vec{V}=\langle a, b, c\rangle \\
& \frac{\partial a}{\partial y}=\frac{\partial b}{\partial x} \\
& \frac{\partial b}{\partial z}=\frac{\partial c}{\partial y} \\
& \frac{\partial a}{\partial z}=\frac{\partial c}{\partial x}
\end{aligned} \left\lvert\, \begin{aligned}
& \text { recessony for } \vec{V} \text { to bervative } \\
& \frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y} \\
& \frac{\partial}{\partial z} \frac{\partial f}{\partial y}=\frac{\partial}{\partial y} \frac{\partial f}{\partial z} \\
& \frac{\partial}{\partial z} \frac{\partial f}{\partial x}=\frac{\partial}{\partial x} \frac{\partial f}{\partial z}
\end{aligned}\right.
$$

Line Integrals

How to interyute "things" \uparrow " along coves Two types of things
a) "desity" type
b) "work" type

$$
\rho=5+x^{2} \mathrm{~g} / \mathrm{cm} \quad \int_{C} \rho(x, y) \underbrace{d S}=\text { mass of the loop } p
$$

Steps: 1) parameterize the curve

$$
\vec{r}(t)=\langle 3 \cos t, 3 \sin t\rangle \quad 0 \leqslant t \leqslant 2 \pi
$$

2) rewrite the integral $\rho(x, y)=5+x^{2}$ in terms of the parameter t.

$$
\begin{aligned}
& x(t)=3 \cos t \\
& y(t)=3 \sin t \\
& s=5+(3 \cos (t))^{2}=5+9 \cos ^{2} t
\end{aligned}
$$

3) Compute $\left\|\vec{r}^{\prime}(t)\right\| \quad \vec{r}^{\prime}(t)=3\langle-\sin t, \cos (t)\rangle$

$$
\left\|\vec{r}^{\prime}(t)\right\|=3
$$

4)

$$
\begin{aligned}
\int_{C} \rho(x, \pi) d s & =\int_{0}^{2 \pi}\left(5+9 \cos ^{2} t\right)\left\|r^{\prime}(t)\right\| d t \\
& =\int_{0}^{2 \pi}\left(5+9 \cos ^{2} t\right) 3 d t \\
& =3\left(10 \pi+9 \int_{0}^{\pi} \cos ^{2}(t) d t\right) \\
& =3\left(10 \pi+9 \frac{1}{2}(2 \pi)\right) \\
& =30 \pi+27 \pi \\
& =57 \pi 9
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}(t)=\langle t,-3 t, 2 t\rangle \quad 0 \leqslant t \leqslant 1 \\
& \vec{r}^{\prime}(t)=\langle 1,-3,2\rangle \\
& \left\|\vec{r}^{\prime}(t)\right\|=\left(1^{2}+3^{2}+2^{2}\right)^{1 / 2}=\sqrt{14}
\end{aligned}
$$

sculung factor

$$
\begin{aligned}
\int_{C} x+y^{2}-2 z d s & =\int_{0}^{1}\left(t+(-3 t)^{2}-2(2 t)\right) \sqrt{\left\|\vec{r}^{\prime}(t)\right\|} d t \\
& =\int_{0}^{1}\left(t+9 t^{2}-4 t\right) \sqrt{14} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{14} \int_{0}^{1}-3 t+9 t^{2} d t \\
& =\frac{3}{2} \sqrt{14}
\end{aligned}
$$

