(taset place at $Z = \frac{1}{2} + \frac{1}{2}(x-z) - \frac{1}{6}(y+i)$ $X = X^{2}, Y^{2} = -(x)$ -2 + 1 × - 1 × 3 + 2 × 6 / 106 + 28 A f(x,y) $\overline{\nabla}f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle$ 1) Its a vector field (one vector at each x, y location) 2) It points in the direction of steepest increase. 3) It is perpendicule to level sets of f.

4) Its length encodes steepness: the longer he gradient the steeper the graph of f is. 5) Most important. For a corve r(E) = 2,1(E), y(E) > The vate of druge of f seen along to $\vec{\nabla} f \cdot \vec{F}'$ ot dt DX Dy

 $) = \chi^2 - \gamma^2$ Saddle (414) h a se a fa es 6

THAY ZZXXZY $\overline{\nabla}h = \langle 2x, -2y \rangle$ #x=0 \$h= <0,-7> Y=x \$\overline h=(2x,-2x)\$ = 2x <1,-1> Question What is the rate of chuse of h(x,y) at x=3, y=-1, ftraveling with velocity 21,-27

$\overline{\nabla}h = \langle 2x, -2y \rangle$
at $x=3$ $y=-1$, $\vec{\nabla}h=\langle 6,2\rangle$
$\tilde{v} = \langle 1, -2 \rangle$
rate of druge is $\overrightarrow{P}h \cdot \overrightarrow{V} = 6 \cdot -2 \cdot 2 = 2$
Some Justition of preparties of the grieliert
$\vec{\nabla} f \cdot \vec{\nabla} = \ \vec{\nabla} f\ \ \vec{\nabla} \ \cos \theta$
Let fake IIVII=1. When is IFfoir at a maximum?
$\ \vec{\nabla}f\ \cos\theta \qquad (\vec{\nabla}points in directer) \\ \vec{\nabla}f = 0 \\ \vec$

 $\vec{\nabla}f \cdot \vec{\nabla} = 0$ when $\Theta = \frac{T}{2}$, the direction $\vec{\nabla}f$. perpendicular to $\vec{\nabla}f$. Directional derivative = f(x,y)(X0,70) point of interest $\vec{V} = \langle V_x, V_y \rangle$ F(t)= 4x0, 40 >+ E < vx, vy > (xo, yo) $D_{\overrightarrow{V}} f(x_{o}, y_{o}) = \frac{d}{l \in I} f(\overrightarrow{r}(t))$ $= \frac{1}{Jt} \int (x_0 + t_{y_y} y_0 + t_{y_y})$

(If I'm studies at Lx0,707 and travelling with velocity of then Diff is exactly the the rate of chaze of f that I am see mg). For most functions $D_{V}f = \vec{V}f \cdot \vec{v}$ $f(x_{1,y}) = \begin{cases} \frac{x^2y}{x^2+y^2} & (x_{1,y}) \neq (0,0) \\ x^2+y^2 & (x_{1,y}) \neq (0,0) \end{cases}$ (0, 0) = (0, 0)This function has directional derivatives in every direction at the origin but it doesn't allow a good tangent plane approximation. The gradient fails to coptine all the durectional de vuit jues

If of and of exist new (xo, yo) and are continuous then the tayat place appreximation at (to, Yo) is "good" and every derectional derivative can be computed at (40,170) by $\overrightarrow{P}f \cdot \overrightarrow{V} = (D_{\overrightarrow{V}}f.)$ P= 9.2 T K1 7 unit vector f(x,y,z) $\vec{V}f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)$

	level sct
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·