$$
\begin{aligned}
& z=\frac{1}{2}+\frac{1}{2}(x-2)-\frac{1}{6}(y+1) \\
& z=-\frac{2}{3}+\frac{1}{2} x-\frac{1}{6} y
\end{aligned}
$$

(taint plane at

$$
x=2, y=-1)
$$

$$
f(x ; y) \quad \vec{\nabla} f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

1) Its a vector field (one vector at each x,y location)
2) It points in the direction of steepest morose. $3]$ It is perpendicular to level sets of f,
3) Its length encodes step ness: the lager the audient the steer the graph of f is.
4) Most important.

For a curve $\vec{v}(t)=\langle x(t)$, y $(t)\rangle$
The vale of chase of f seen alas \vec{r} is $\vec{\nabla} f \cdot \vec{r}^{\prime}$

$$
\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}
$$

$$
\text { If } x=0 \quad \vec{\nabla} h=\langle 0,-y\rangle
$$

$$
\text { If } y=x \quad \vec{\nabla} h=\left\langle 2 x^{x},-2_{x}\right\rangle
$$

$$
=2 x\langle 1,-1\rangle
$$

Questicer What is the rate of change of $h(x, y)$ at $x=3, y=-1$ if traveling with velocity $\langle 1,-2\rangle$

$$
\begin{aligned}
& \vec{\nabla} h=\langle 2 x,-2 y\rangle
\end{aligned}
$$

$$
\vec{\nabla} h=\langle 2 x,-2 y\rangle
$$

at $x=3 \quad y=-1, \quad \vec{\nabla} h=\langle 6,2\rangle$

$$
\vec{v}=\langle 1,-2\rangle
$$

vate of chuse is $\vec{\nabla} h \cdot \vec{v}=6 \cdot 1-2-2=2$

Sone justrifiation of preperties of the suabiat.

$$
\vec{\nabla} f \cdot \vec{v}=\|\vec{\nabla} f\|\|\vec{v}\| \cos \theta
$$

Let take $\|\vec{v}\|=1$. When is $\vec{V} f \cdot \vec{v}$ at a maximin?

$$
\|\vec{\nabla} f\| \cos \theta \quad(\vec{v} \text { porns in dhectan of } \overrightarrow{\nabla f}) \text {. }
$$

$\vec{\nabla} f \cdot \vec{v}=0$ when $\theta=\frac{\pi}{2}$, the darectan perperdiculs to $\vec{\nabla} f$.

Directional derivative
$f(x, y) \quad\left(x_{0}, y_{0}\right)$ point of intent

$$
\vec{v}=\left\langle v_{x}, v_{y}\right\rangle
$$

$$
\left(\alpha_{0}, y_{0}\right)
$$

$$
\begin{aligned}
& \vec{r}(t)=\left\langle x_{0}, y_{\theta}\right\rangle+t\left\langle v_{x}, v_{y}\right\rangle \\
& \begin{aligned}
D_{\vec{v}} f\left(x_{0}, y_{0}\right) & =\left.\frac{d}{d t}\right|_{t=0} f(\vec{r}(t)) \\
& =\left.\frac{d}{d t}\right|_{t=0} f\left(x_{0}+t v_{y}, y_{0}+t u_{y}\right)
\end{aligned}
\end{aligned}
$$

(If I'm stadues at $\left\langle x_{0}, 40\right\rangle$ and travellars with velocily \vec{u} then $D_{v} f$ is exuctly the the rate of chase of f that I an see ing).
For most fuctions $D_{\vec{v}} f=\vec{\nabla} f \cdot \vec{v}$

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2} y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array}\right.
$$

This fanction hus direotiond der inatives in evey daraction at the origh but it doesn't allaw a sood tangent plane appraxian ation, The gaodieit fails to coptive all the dinectional de inat ines

If $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist near $\left(x_{0}, y\right)$ ad are continuous than the tangat plone appoceination at $\left(x_{0}, y_{0}\right)$ is "gGod" and evay divectional dervative

