Gradient

$$
\begin{aligned}
& T(x, y) \quad \vec{r}(t)=\langle x(t), y(t)\rangle \\
& \left.\begin{array}{l}
\frac{d}{d t} T(\vec{r}(t))=\frac{\partial T}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial T}{\partial y} \cdot \frac{d y}{d t}
\end{array}\right] \\
& \vec{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle=\left\langle\frac{d x}{d t}(t), \frac{d y}{d t}(t)\right\rangle \\
& =\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle \\
& \vec{w}=\langle a, b\rangle \\
& \left\langle\vec{w} \cdot \vec{r}^{\prime}=a \frac{d x}{d t}+b \frac{d y}{d t}\right. \\
& \left\langle\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}\right\rangle \cdot \vec{r}^{\prime}=\frac{\partial T}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial T}{\partial y} \cdot \frac{d y}{d t}
\end{aligned}
$$

The vector $\left\langle\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}\right\rangle$ is culled the gradient at T and is written $\vec{\nabla} T$.

The vector $\vec{\nabla} T$ depends an (x, y).

$$
\begin{aligned}
T(x, y)=x^{2}+y^{2} & \vec{\nabla} T
\end{aligned}=\left\langle\frac{\partial T}{2 x}, \frac{\partial T}{2 y}\right\rangle,
$$

At the orig $x=0, \tau=0 \quad \vec{\nabla} T=\langle 0,0\rangle$
At $\quad x=0, y=1 \quad \vec{\nabla} \tau=\langle 0,2\rangle$

$$
\begin{array}{ll}
x=1, y=0 & \vec{\nabla} T=\langle 2,0\rangle \\
x=0, & y=-(\\
\vec{\nabla} T=\langle 0,-2\rangle \\
x=-1, y=0 & \vec{\nabla} T=\langle-2,0\rangle \\
x=1, y=1 & \vec{\nabla}=\langle 2,2\rangle
\end{array}
$$

gradient vector field

$$
\frac{d}{d t} T(\vec{r}(t))=\vec{\nabla} T \cdot \vec{r}^{\prime}
$$

$$
\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta \quad \vec{\nabla} T a \vec{r}^{\prime}=\|\vec{\nabla} T\|\left\|\vec{r}^{\prime}\right\| \cos \theta
$$

The gradicat is aliens perpudicular to level sets (1:)

$$
\begin{gathered}
T(x, y)=x^{2}+y^{2} \\
x^{2}+y^{2}=1
\end{gathered}
$$

