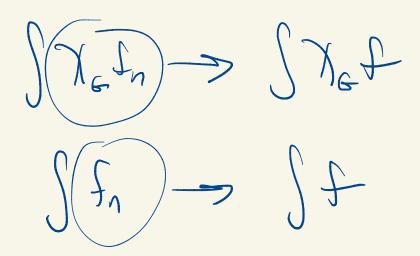
XGfn -> XGF



Goal: L'is complete

Every absolutely convergent series is convergent. Ž || [fn] | 400 Ž [f,] n = 1

$$\sum_{n=1}^{\infty} \int |f_n| = S \quad f_{n+1} = S \quad f_{n+1} = S \quad f_{n-1} = S \quad f_$$

= $\sum_{n=1}^{\infty} || [f_n] ||_{1} < \infty$

$$\lim_{n \to \infty} \int S_n = \int g$$

$$\int s_n = \int \sum_{k=1}^{\infty} |f_k| = \sum_{k=1}^{\infty} |f_k| = \sum_{k=1}^{\infty} ||f_k|| = \sum_{k=1}^{\infty} ||f_k|| = \sum_{k=1}^{\infty} ||f_k||$$

$$\int s_n = \sum_{k=1}^{\infty} ||f_k|| < \infty.$$

Let
$$r_n = \hat{Z} f_k$$
.
 $r_{k=1}$
Observe $|r_n| \leq \hat{Z} |f_k| \leq 9$

If for some x,
$$g(x) < 60$$
 then
 $\sum_{k=1}^{\infty} f_k(x)$ is absolutely convesent and
 $k=1$
converses to a limit. $\left(\sum_{k=1}^{\infty} |f_k(x)| = g(x)\right)$
We define $f = \left(\sum_{k=1}^{\infty} f_k(x) - g(x) < \infty\right)$
 $0 - g(x) = \infty$.

Exercise: f is measurable. Observe that $|f| \leq g$ and $v_n \rightarrow f$ p.w. a.e.

By the Dominant Conseque Theorem
$$f \in L'prov$$

and $\int r_n \rightarrow \int f$.
Observe $|| [r_n] - [f]||_{_{I}} = \int |r_n - f|$.
Since $|r_n - f| \leq 2g$ and since $|r_n - f| \rightarrow 0$ pw ac.
then $\int |r_n - f| \rightarrow \int 0 = 0$.
That is $|| [r_n] - [f]||_{_{I}} \rightarrow 0$ and $[r_n] \rightarrow [f]$

Interesting dense subsets.

Thus Let FEL! Given E 70 there exists:
a) an integrable simple function 4 such that

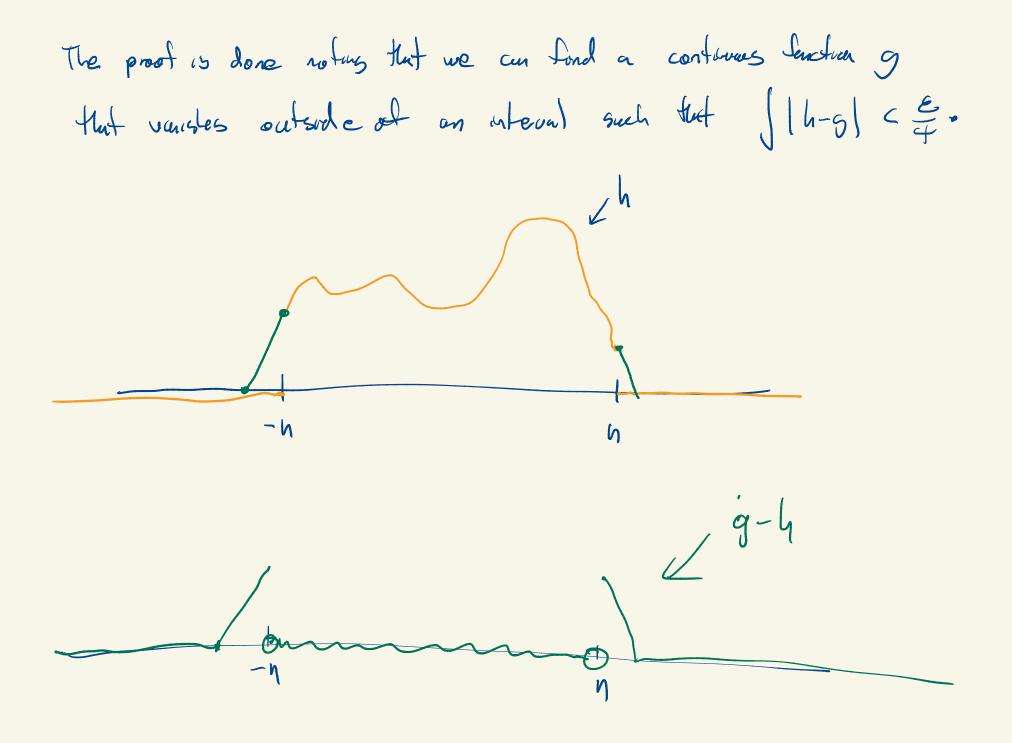
$$\int |f-7| \leq \varepsilon$$
. ($\|f-7\|_{1} \leq \varepsilon$),
b) a continuous function g with compart support
($g=0$ outside a bounded set)
with $\int |f-9| \leq \varepsilon$.

Pf: Let $\varepsilon > 0$. Let $I_n = [-n, n]$. Suppose fel! By the monotone conversive theorem $\int_{I_n}^{I} |f| \rightarrow 0$ and hence I_n

there exists an interval
$$I = I_n$$
 such that $\int_{I_n} |f| < \frac{e}{f}$.
By the basic construction there exists a sequence of simple functions
 P_n with $0 \le |P_n| \le \chi_1 |f|$ and $P_n \Rightarrow \chi_1 f$ providues.
Moreover, $|\chi_1 - P_n| \le 2\chi_1 |f|$ and $\gamma_1 f - P_n = 20$
pointure a.e. By the DCT $\int |\chi_1 f - P_n| \Rightarrow 0$.
So we can find a simple function P with $0 \le |P| \le \chi_1 |f|$
and $\int |T_1 f - P| < \varepsilon_1 f$.
Note that $\int |f - P| = \int_{I} |f| + \int |f P| = \int_{I} |f| + \int |T_1 f \cdot P| \le \frac{e}{f} + \frac{e}{f} < \varepsilon_0$
Since P is integrable, we have preved part a .

Pick K such that
$$|Q| \leq K$$
.
By your honework there is a continues function h on I ($|h| \leq k$)
such that $m(\xi Q \neq h_3) \leq \epsilon/8k$.

Observe
$$\begin{aligned} \int_{I} \frac{|\varrho - h|}{|l|} \leq 2K \operatorname{m} (2 \varrho + h^{3}) \leq \frac{\varepsilon}{4} \\ \leq 2K \chi_{2 \varrho + h^{3}} \end{aligned}$$
Le exted h by O outside of I. Observe
$$\begin{aligned} \int |f - h| \leq \int |f - \varrho| + \int |\varrho - h| < \frac{\varepsilon}{2} + \int |\varrho - h| < \frac{3\varepsilon}{4}. \end{aligned}$$



Exercise: Polynaminus are dense in
$$L'([a,b])$$

Exercise: $L'([a,b])$ is separable.
Exercise: $L'([a,b])$ is separable.
Exercise: L' is separable.

Exercise: Piecunge line comparity supported functions are denser. I L'

$$L^{P} = \frac{2}{5} f_{\perp} m e a so mble}, |f|^{P} \in L^{1} \frac{3}{5}$$
 (in think these are equivalence classes)

$$||f||_{P} = \left[\int |f|^{P}\right]^{1/P} \longrightarrow P < \infty$$

$$L^{\infty} = \frac{2}{3} f: \text{massorable and there exists } K \text{ with } |f| \leq K \text{ a.e. } \frac{3}{3}$$

$$||f||_{00} = \inf \frac{2}{3} K: |f| \leq K \text{ a.e. } \frac{3}{3}$$

$$|| \min_{k} |f|'$$