Recall: If f_{15} meas and $f \geqslant 0$ and

$$
f f=0 \Rightarrow f=0 \text { ae. }
$$

Exercise: If $f \geq 0$ and $f=0$ ae. then $\int f=0$ (Do this from scratch)

Esterase: If f, g are mensurable ard g is finite everyute then $f+g$ is measurable.

Lennu: Suppose $f, g \geqslant 0$ are measurable and integrable. Then

$$
f=g \text { a.e. iff } \int_{E} f=\int_{E} g \text { for }
$$ all measurable sets E.

Pf: Suppose $f=g$ are. Let $N=\{f \neq g \xi$. If E is measamble then

$$
\begin{aligned}
& \int_{E} f=\int_{E \cap N} f+\int_{E \cap N^{c}} f=\int_{E \cap N^{c}} f=\int_{E \cap N^{c}} g=\int_{E} g . \\
& \int X_{E \cap N} f \int_{E} x_{N} f \int_{E} x_{E^{C}} f
\end{aligned}
$$

For the convose consider the set $E=\{f>g\}$. (Execute: thus is mensomble)
On $E, f=(f-g)+g$. Hare $i_{\text {finite. }}$

$$
\int_{E} f=\underbrace{(f-g)}_{\text {mews. }}+\int_{E} g \text { and have } \int_{E}(f-g)=0 \text {. }
$$

Now $X_{t}(f-g) \geqslant 0$ and $\int X_{t}(f-g)=0$ so $X_{E}\left(f_{-g}\right)=0$ are. and lace $m(E)=0$.

Similarly, $m(\xi g>f \xi)=0$ and $f=g$ ace.
$f \geqslant 0$
Prop: If $f_{, g} \in L^{\prime}$ then

$$
f=g \text { a.e. if } \int_{E} f=\int_{e} g \text { for all measurable sets } E \text {. }
$$

Pf: Exeruse: If $f=g$ ace. then $\int_{E} f=\int_{E} g$ for all mans. E, Suppose $\int_{E} f=\int_{e} g$ for all menus. sets E.

Let $E_{++}=\{f \geqslant 0, g \geqslant 0\}$. Ther for ay measouble set F

$$
\int_{F} x_{E_{++}} f=\int_{F \cap E_{++}} f=\int_{F \cap E_{++}} g=\int_{F} x_{E_{++}} g .
$$

Thus, by the prenias lemmes $X_{E_{t+}} f=X_{E_{t+}}$ g a.e.
and $f=g$ a.e. ar $E_{f f}$.
Siniturly $f=$ g a.e. ar $E_{-}=\{f<0, g<0\}$.
Cansuler $E_{1-}=\{f \geqslant 0, g<0\}$. Then

$$
0 \leqslant \int_{E_{+-}} f=\int_{E_{+}} g \leq 0,
$$

Hence $\int_{E_{+1}} g=0$ and $X_{E_{+-}} g=0$ a.e

Hence E_{--}is a vul set. Sinimbaly $E_{-4}=\{f\langle 0, g\rangle \partial\}$ is mall. But then $\{f \neq g\}$ is a vul set; it is The union of E_{-+}, E_{+-}and two wall subsets of E_{H+} and E. .

Chase of notation $L^{\prime}(E) \longmapsto L_{\text {prov }}^{\prime}(E)$
Def: $L^{\prime}(E)$ where E is mensurable consists af equivalence classes of functions in $L_{\text {par }}^{\prime}(\epsilon)$ where $f \approx g$ if $f=g$ a.e.
Exease: This is un equivalence relation.

Execise: If $f \in L_{\text {pou }}^{\prime}(F)$ ad $g=f$ a.e. then $g \in L_{\text {pao }}^{\prime}(E)$.
For nav we'll write $[f]$ for elurarks of L^{\prime} where $f \in L_{\text {prov. }}^{1}$ If $[f] \in L^{\prime}(\mathbb{R})$ what is

$$
\int_{E}[f]=\int_{E} f
$$

If $\hat{f}=f$ w.e. $[\hat{f}]=[f]$

$$
\int_{E} \hat{f} \stackrel{?}{=} \int_{e} f
$$

$$
[f+g]
$$

Hew to add? $[f]+[g]=[\hat{f}+\hat{g}]$
wher $\hat{f}=f$ a.e. and is finte eveyulve
and similarly for \hat{g}.
Exercise: This is well defined.

$$
\begin{aligned}
\int([f]+[s]) & =\int[\hat{f}+\hat{s}] \\
& =\int(\hat{f}+\hat{g}) \\
& =\int \hat{f}+\int \hat{s} \\
& =\int[\hat{f}]+\int[\hat{s}] \\
& =\int[f]+\int[s]
\end{aligned}
$$

$$
\frac{\downarrow}{c}[f]:=[c f] . \quad \text { Exercise: this is well defined. }
$$

Erecuse: $\quad \int c[f]=c \int[f]$
Exacise: L^{\prime} is a vector space under thase apoations, and $[f] \mapsto \int_{E}[f]$ is linew in E.

Def: $|[f]|=[|f|]$
Etecuise: this is well detaned.
Dcf: If $[f] \in L^{\prime}$

$$
\|[f]\|_{1}=\int|[f]|=\int|f|
$$

Is this a nom?

$$
\begin{aligned}
\|[f]+[g]\|_{1} & =\|[\hat{f}+\hat{s}]\|^{\prime} \\
& =\int|\hat{f}+\hat{s}| \\
& \leqslant \int(|\hat{f}|+|\hat{g}|) \\
& =\int|\hat{f}|+\int|\hat{g}| \\
& =\|[\hat{f}]\|_{1}+\|[\hat{g}]\|_{1} \\
& =\|[f]\|_{1}+\|[s]\|_{\mid}
\end{aligned}
$$

Suppose $\|[f]\|_{l}=0$.
Then $\quad \int|f|=0$.
Since $|f| \geqslant 0 \Rightarrow|f|=0$ are. $\Rightarrow f=0$ are.

$$
[f]=[0] .
$$

Next big step: L^{\prime} is complete.

$$
\left.\begin{array}{ll}
D C T: & g \in L_{\text {prov }}^{\prime} \\
& \left|f_{n}\right| \\
& \leqslant g \\
f_{2} \rightarrow f & \text { p.w. }
\end{array}\right] \Rightarrow \begin{aligned}
& \\
& f \in L_{\text {par }}^{\prime} \\
& \\
& \\
& f f_{n} \rightarrow \int f
\end{aligned}
$$

$$
g \in L_{p m}^{1}
$$

Modification: $\quad\left|f_{1}\right| \leqslant g$ a.e. for each n

$$
f_{n} \rightarrow f \quad \text { p.w. w.e. }
$$

$$
\Rightarrow \quad \int f_{n} \rightarrow \int f
$$

Let $E_{n}=\left\{\left|f_{n}\right|>g\right\}$.
Let $F=\left\{f_{n} \rightarrow f\right\}$
Let $G=\left(\left(U E_{n}\right) U F\right)^{c}$

$$
\left|X_{G} f_{n}\right| \leqslant g
$$

$$
\begin{aligned}
& X_{G} f_{n} \rightarrow x_{G} f \\
& \int x_{G} f_{n} \rightarrow \int x_{G} f \\
& \int\left(f_{n}\right) \rightarrow \int f
\end{aligned}
$$

Goal: L ' is complete.
Evey absalutely conversect series is convesent,

$$
\sum_{n=1}^{\infty}\left[f_{n}\right] \quad \sum_{n=1}^{\infty}\left\|\left[f_{n}\right]\right\|<\infty
$$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \int\left|f_{n}\right| \text { is finite. } \\
& g=\sum_{n=1}^{\infty}\left|f_{n}\right| \\
& s_{m}=\sum_{n=1}^{m}\left|f_{n}\right|
\end{aligned}
$$

Clam: $g \in L_{\text {prov. }}^{l}$

$$
\begin{aligned}
& S_{m} \geqslant 0 \quad S_{m} \nsim g \\
& \int_{g}=\lim _{m \rightarrow \infty} \int \delta_{m}=\lim _{m \rightarrow \infty} \int \sum_{n=1}^{m}\left|f_{1}\right| \\
& M C T=\lim _{m \rightarrow \infty} \sum_{n=1}^{m} \int\left|f_{n}\right|
\end{aligned}
$$

$$
=\sum_{n=1}^{\infty}\left\|\left[f_{n}\right]\right\|_{\mid}<\infty .
$$

